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Lecture 16 - Solution of Dynamic Equilibrium Equations, cont’d 

Prof. K. J. Bathe MIT OpenCourseWare 

Reading assignment: Sections 9.1-9.3


Recall from our last lecture the general dynamic equilibrium equation and initial conditions:


0MU ¨ + CU̇ + KU = R(t) ; 0U , U̇ (1) 

This equation can be solved by: 

Mode superposition • 

Direct integration • 

Mode Superposition 

Kφi = ωi 
2Mφi (2) 

The ωi 
2 are the eigenvalues and φi are the eigenvectors for this system. Solve for ωi 

2 , φi: 

ω2 ω2 ≤ . . . ≤ ω2 
1 2 n0 ≤ ���� 
≤ ���� ���� 

for φ1 for φ2 for φn 

where each φi refers to a mode shape. 

Aside: Consider, picking “a” φ, 
Kφ = αMφ̃ (3) 

1where α is a nonzero scalar. Obviously, K 
� 

α φ 
� 

= Mφ̃ = R. If φ̃ is an eigenvector, then the load R 
1obtained using φ̃ gives us back the vector φ̃ (now scaled by α ). 

We also used orthonormality to establish that: 

φT
i Mφj = δij 

φT
i Kφj = ωi 

2δij 

The definition of the Rayleigh quotient is 

φT Kφ 
ρ (φ) = 

φT Mφ 

where φ can be any vector. So, we have 
ρ (φi) = ωi 

2 

ω1
2 ≤ ρ (φi) ≤ ωn 

2 

Recall that the strain energy for any vector φ is 1
2 φ

T Kφ. Thus, the strain energy corresponding to a 
displacement vector (for which φT Mφ = 1) is bounded by 2

1 times the eigenvalues ω1
2 and ωn 

2 (frequencies 
squared, λ = ω2). In mode superposition, we use ⎡ ⎤ 

ω2 zeros 1 

U = ΦX = Σ 
n 

φixi ; Ω2 = ⎢⎣ . . . 
⎥⎦ 

i=1 
zeros ω2 

n 

1 
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Then, from (1), we now have 
X ¨ + ΦT CΦẊ + Ω2X = ΦT R (4) 

ẍ + 2ξiωiẋi + ωi 
2 xi = φi

T R = ri (5) 

Here, 2ξiωiẋi is the term for damping, and ξi is the damping ratio. Therefore, from Eq. (5), we now have n 
fully decoupled equations (each one of a single-DOF model). Assume ξi = 0. Then, Eq. (5) becomes 

ẍi + ωi 
2 xi = ri ; i = 1, 2, . . . , n (6) 

We see that ri = φT
i R, and the initial conditions 0xi , 0ẋi are next established. 

Initial Conditions 
0U = Φ 0X (ΦT M ) 0U = ΦT MΦ 0X→ � �� � 

I 

Thus, 
0X = ΦT M 0U ; 0 Ẋ = ΦT M 0 U̇ (7) 

Consider the following simple case 
0 U̇ = 0 ; R = 0 ; 0U = αφ1 

Then, Eqs. (6) and (7) reduce to ẍ1 + ω1
2x1 = 0 with 0x1 = α, 0ẋ1 = 0. Also xi = 0, i ≥ 2. The overall 

system response is 
U (t) = φ1x1(t) 

The response is in only one mode! If the beam is initially displaced in only one mode and let go, it will 

vibrate only in that mode. If damping exists, the structure will still vibrate in that single mode, but the 
amplitude will decay over time. 

Direct Integration 

I. Explicit integration


Consider the central difference method:


2 
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We assume the solution is known up to time t and use the central difference method to determine the 
solution at time t + Δt. At time t, Eq. (1) gives us 

M tU ¨ + C tU̇ + K� �� 
tU� = tR 

tFI 

The internal forces, tFI , are calculated from the element stresses. The unknown in the equation is 
t+ΔtU : 

U̇ = 
1 t+ΔtU − t−ΔtUt (A) 

2Δt 

1 Δt ΔttU ¨ U̇ − U̇t+ t− (a) 2 2= 
Δt 

1 1Δt Δt 
U̇ = U̇ =t+ΔtU − tU − t−ΔtUt+ tU , t− (b) 2 2 

Δt Δt 

Now substitute (b) into (a): 

tU ¨ = 
1 t+ΔtU − 2 tU + t−ΔtU (B) 

(Δt)2 

Use Eqs. (A) and (B) in Eq. (1) applied at time t to obtain 

(c1M + c2C) t+ΔtU = tR̂ (8) 

where c1 and c2 are constants, and tR̂ is constructed from known values. Next, assume C = 0, and 
M is diagonal. ⎤⎡ ⎢⎢⎢⎢⎢⎣ 

× 
× zeros 

. . . 
zeros × 

× 

⎥⎥⎥⎥⎥⎦ 
M = 

Then (8) involves no factorization and is very efficiently solved. If one diagonal element in M is zero, 
however, the method would not work! Actually, for stability, we must have 

TnΔt ≤ = Δtcritical 
π 

where Tn = ω
2π 

n 
and ωn is the highest natural frequency. If we use a time step greater than Δtcritical 

the solution will diverge quickly. 

Example: The Mass Matrix M for a 4-node 2D Element 

3 
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Mconsistent = ρHT HdV 
V 

To obtain Mlumped, place 1
4 of the total mass at each node. ⎤⎡ 

× zeros 
× 

M = 
8×8 

⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎦ 
= diagonal matrix . . . 

× 
zeros × 

In the central difference method, t+ΔtU is calculated using Eq. (1) at time t. Therefore, the method 
is called an explicit integration method. 

II. Implicit integration, e.g. trapezoidal rule (special case of Newmark method) 

These methods use Eq. (1) at time t + Δt to obtain t+ΔtU . We will explore them further in the next 
lecture. 

Explicit method: Equilibrium at time (t) results into displacements at time (t + Δt)→
Implicit method: Equilibrium at time (t + Δt) results into displacements at time (t + Δt)→ 

4 
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