2.092/2.093 — Finite Element Analysis of Solids & Fluids I Fall ‘09

Lecture 15 - Solution of Dynamic Equilibrium Equations

Prof. K. J. Bathe MIT OpenCourseWare

In the last lecture, we described a physical setup that demonstrates the technique of Gauss elimination. We
used clamps on each DOF and removed one clamp for one step of Gauss elimination.
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® should be positive, and should remain positive.

Our rule: Remove clamps one at a time, in the order we would perform Gauss elimination. If there is “a
clamp “seeing” no more stiffness after having removed some clamp(s), the structure is unstable.

Example

frictionless hinge
)
\S)

MR
s

N
B
n
=}

X

All diagonal terms are positive. However, there will be a zero diagonal entry after Gauss elimination has
been performed for the 3rd DOF.
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after 3 Gauss elimination of u1, Uz and uz, us sees no stiffness
Solution of dynamic equilibrium equations
Consider a system with n DOF's: ) )
MU+CU+€{II_J/—R(t) (1)
with initial conditions ) )
Ul,,="U : Ul,_,="U
The term CU will be discussed later. Our methods for solving (1) are:
e Mode superposition: We first transform the equation and then integrate.
e Direct integration: We integrate the equation directly!
First, let’s transform Eq. (1). Assume we use
ut)= P X (t) (2)
The function P is independent of time. Substitute this into Eq.(1) to obtain
P'TMPX + P'cPX + PTKPX = P'R (A)

The best P matrix would diagonalize the matrix, thereby decoupling the equations. To obtain a “wonderful”
P, consider )
MU + KU =0 (free vibration)

U = ¢sinw (t —tg)

Then,
—wMosinw (t —to) + K¢sinw (t —tg) =0 (a)

For (a) to hold,
K¢=uw’Mo¢

(K—w’M)¢p=0

Let w? = X\. We have a generalized eigenvalue problem. We must have det (K — AM) = 0, and we find the
solution for A from the roots of the characteristic polynomial

p(A) =ap+ a1 A+ as\? + ...+ ap A"
Find the eigenvalues A1, Ag, ..., A, from p(\) = 0 and then the eigenvectors ¢, ..., ¢, from
(K—XA\M)g; =0
Then, normalize ¢; so that it satisfies ¢ M¢; = 1. We now have (see Chapters 2, 10)

0< wf < wg <...< wfl
~—~ ~—~ ~—~
for ¢1 for ¢o for ¢,
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Each ¢; represents a mode shape, and we have

¢ M¢; =6,

where §;; is the Kronecker delta, so we call ¢»; M-orthogonal (or M-orthonormal, because oI Mo, = 1).
In turn, this yields
o] K¢j = widi;

Physically,

Consider ¢;:

¢ Mg, =1
1K1 =
The strain energy in the beam is %qblTK b1 = %w% By orthonormality, also,
@3 Moy =0
b3 My =1
and
b3 K¢y = wj

Consider this simple case, for which we must solve K¢ = w2 M ¢:

%iiﬁi@

Then

A non-trivial solution is kK = 0, ¢ =

co—~oo
1
€
I
8

Note: w? = 0 for rigid body motion. (No strain energy!)
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Now let’suse P =[¢p1 ... ¢yn]. Then, (A) becomes
w? Zeros
X +PTCcPX + X =P'R
Z€TO0S w2

n

For now, let’s assume no damping. (If C' = 0, there is no damping and the equations are decoupled.) Then,
we have

X+0)Xx= "R

nxn
w? Z€ros x1
@=[¢1 2 ... ¢u] ; Q= ;o X=|
ZEros w2 Tn

So, we have
Bl =¢lR (i=1,...,n)

As always, we need the initial conditions °z;, °%; to solve.
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