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Lecture 15 - Solution of Dynamic Equilibrium Equations 

Prof. K. J. Bathe MIT OpenCourseWare 

In the last lecture, we described a physical setup that demonstrates the technique of Gauss elimination. We 
used clamps on each DOF and removed one clamp for one step of Gauss elimination. 

⎤⎡⎤⎡ 
⊗ × 
× ⊗ × × 

u1× ×⎢⎢⎣ 
⎢⎢⎣ 

⎥⎥⎦ 
⎥⎥⎦ 

u2 

u3× × ⊗ × 
× × × ⊗ u4


⊗ should be positive, and should remain positive.


Our rule: Remove clamps one at a time, in the order we would perform Gauss elimination. If there is “a” 
clamp “seeing” no more stiffness after having removed some clamp(s), the structure is unstable. 

Example 

⎤⎡ 

K = 

⎢⎢⎢⎢⎢⎢⎣ 

× 
× 

× 

⎥⎥⎥⎥⎥⎥⎦× 
× 

× 

All diagonal terms are positive. However, there will be a zero diagonal entry after Gauss elimination has 
been performed for the 3rd DOF. 
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Solution of dynamic equilibrium equations 

Consider a system with n DOFs: 
MU ¨ + CU̇ + KU = R(t)	 (1) 

FI 

with initial conditions � � 
U � = 0U ; U̇ � = 0U̇

t=0 t=0 

The term CU̇ will be discussed later. Our methods for solving (1) are: 

• Mode superposition: We first transform the equation and then integrate. 

• Direct integration: We integrate the equation directly! 

First, let’s transform Eq.	 (1). Assume we use 

U(t) = P X (t) (2) 
n×n n×1

The function P is independent of time. Substitute this into Eq.(1) to obtain 

P T MP X ¨ + P T CP Ẋ + P T KPX = P T R (A) 

The best P matrix would diagonalize the matrix, thereby decoupling the equations. To obtain a “wonderful” 
P , consider 

MU ¨ + KU = 0 (free vibration) 

U = φ sin ω (t − t0) 

Then, 
−ω2Mφ sin ω (t − t0) + Kφ sin ω (t − t0) = 0 (a) 

For (a) to hold, 
Kφ = ω2Mφ 

K − ω2M φ = 0 

Let ω2 = λ. We have a generalized eigenvalue problem. We must have det (K − λM ) = 0, and we find the 
solution for λ from the roots of the characteristic polynomial 

p(λ) = a0 + a1λ + a2λ
2 + . . . + anλn 

Find the eigenvalues λ1, λ2, . . ., λn from p(λ) = 0 and then the eigenvectors φ1, . . . , φn from 

(K − λiM ) φi = 0 

Then, normalize φi so that it satisfies φT
i Mφi = 1. We now have (see Chapters 2, 10) 

0 ≤ ω1
2 ω2

2 ≤ . . . ≤ ωn
2 ���� 

≤ ���� ���� 
for φ1 for φ2 for φn 
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Each φi represents a mode shape, and we have 

φT
i Mφj = δij 

where δij is the Kronecker delta, so we call φi M -orthogonal (or M -orthonormal, because φi
T Mφi = 1). 

In turn, this yields 
φT

i Kφj = ωi 
2δij 

Physically, 

Consider φ1: 
φT 

1 Mφ1 = 1 

φT 
1 Kφ1 = ω1

2 

The strain energy in the beam is 1
2 φ1 

T Kφ1 = 12 ω1
2 . By orthonormality, also, 

φT 
2 Mφ1 = 0 

φT 
2 Mφ2 = 1 

and 
φT 

2 Kφ2 = ω2
2 

Consider this simple case, for which we must solve Kφ = ω2Mφ: 

⎤⎡ 

M = 

⎢⎢⎢⎢⎣ 

× 
× 

0 

⎥⎥⎥⎥⎦× 
× 

Then 
1 

Mφ = Kφ = κKφ 
ω2 ⎤⎡ 

A non-trivial solution is κ = 0, φ = 

⎢⎢⎢⎢⎣ 

0 
0 
1 
0 
0 

⎥⎥⎥⎥⎦→ ω2 = ∞. 

Note: ω1
2 = 0 for rigid body motion. (No strain energy!) 
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Now let’s use P = [ φ1 . . . φn ]. Then, (A) becomes ⎡ ⎤ 
ω2 zeros 1 ⎢⎣ 

⎥⎦X ¨ + P T CP Ẋ + X = P T R. . . 
zeros ω2 

n 

For now, let’s assume no damping. (If C = 0, there is no damping and the equations are decoupled.) Then, 
we have 

TX ¨ + Ω2X = Φ R 
n×n 

ω2 zeros 1 

⎡ ⎤⎡⎤ 
x1 ⎢⎣ 

⎥⎦ ; X = ⎢⎣ . . . 
⎥⎦; Ω2 =Φ = .φ1 φ2 . . . φn . . 

zeros ωn 
2 xn 

So, we have 
ẍi + ωi 

2 xi = φi
T R (i = 1, . . . , n) 

As always, we need the initial conditions 0xi, 0ẋi to solve. 
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