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2.092/2.093 — Finite Element Analysis of Solids & Fluids I Fall ‘09 

Lecture 11 - Heat Transfer Analysis 

Prof. K. J. Bathe MIT OpenCourseWare 

Reading assignment: Sections 7.1-7.4.1 

To discuss heat transfer in systems, first let us define some variables. 

θ(x, y, z, t) = Temperature 
Sθ = Surface area with prescribed temperature (θp) 
Sq = Surface area with prescribed heat flux into the body 

Given the geometry, boundary conditions, material laws, and loading, we would like to calculate the tem­
perature distribution over the body. To obtain the exact solution of the mathematical model, we need to 
satisfy the following in the differential formulation: 

Heat flow equilibrium • 

Compatibility • 

Constitutive relation(s) • 

Example: One-Dimensional Case 

We can derive an expression for system equilibrium from the heat flow equation. 

q +q B dx = 0 −q 
x+dxx 

Using the constitutive equation, 
∂θ 

q = −k 
∂x 

q = q 
∂q 

+ dx 
∂x x+dx x x 

∂2θ∂θ ∂θ B dx = 0 −k + k + dx + q
∂x ∂x ∂x2 
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We obtain the result 
∂2θ 

k + q B = 0 in V 
∂x2 

∂θ 
= q S , θ = 0 k 

∂x L L x=0 

Principle of Virtual Temperatures


Clearly: 
∂2θ¯ + q B = 0 (A) θ k 
∂x2 � L∂2θ ∂2θ¯ B ¯ dV = A θ k B dx = 0 + q + qθ k 

∂x2 ∂x2 
V 0 

Hence, � L 
¯ ∂2θ 
θ k 

∂x2 
0 

+ q B dx = 0 
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∂θ 
��L � L � 

∂θ ̄ ∂θ 
� � L 

θk 
∂x 

− 
∂x 

k
∂x 

dx + θqB dx = 0 (B) 
0 0 0 � L � � � � � L � 

∂θ ̄ ∂θ � � � 
k dx = ¯ θq̄ S �θqB dx + � 

∂x ∂x 0 0 x=L 

In 3D, the equation becomes 

θ
�T 

kθ�dV = θ̄T q B dV + θ̄T q S dSq (C) 
V V Sq ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ∂θ ∂θ̄
k 0 0 ⎢ ∂x ⎥ ⎢ ∂x ⎥ ⎣ ⎦ ⎢ ∂θ ⎥ ⎢ ∂θ̄ ⎥k = 0 k 0 ; θ� = ⎣ ∂y ⎦ ; θ

� 
= ⎣ ∂y ⎦ 

0 0 k ∂θ ∂θ̄
∂z ∂z 

For example: 

q S = h θe − θS → convection 

q S = κ θr − θS → radiation 

θe = temperature of the environment 
θr = temperature of the radiation source 

θ(m)(x, y, z, t) = H(m)θ ; θS(m) = HS(m)θ 

θ
� (m) = B(m)θ ; θ̄

�(m) = B(m)θ ̄ 

Substituting this into (C), we obtain 
Kθ = Q 

K = Σ K(m) ; K(m) = B(m)T k(m)B(m)dV (m) 

m V (m) 

Q = QB + QS 

QB = Σ QB 
(m) ; QB 

(m) = H(m)T q B(m)dV (m) 

m V (m) 

QS = Σ Q(m) ; Q
(m) = HS(m)T 

� 
h 

� 
θe − θS 

��(m) 
dSq 

(m) 

m S S (m)
Sq 

θS is unknown, so 

QS 
(m) = 

� 
Sq 

(m) HS(m)T hθe(m)dSq 
(m) − 

�� 
Sq 

(m) HS(m)T hHS(m) 
dSq 

(m) 
� 
θ 

Here we need to sum over all Sq 
(m) for element (m). 
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Example


⎡ ⎤ 
θ1 � � ⎢ ⎥ 

θ(x, y) = h1 h2 h3 h4 ⎣⎢ θ2 ⎦⎥ 
θ3 

θ4 

1 � x � 
h1 = 1 + (1 + y) ; h2 = . . . 

4 2 ⎡ ⎤ ⎡	 ⎤ 
∂θ ⎣	 ∂x ⎦ = ⎣ h1,x h2,x h3,x h4,x ⎦ θ 
∂θ 
∂y h1,y h2,y h3,y h4,y 

B �	 1 � � � � � � 
xHS = H � 

y=1 
→ HS =

2 
1 + x 

2 1 − 2 0 0 
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