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2.092/2.093 — Finite Element Analysis of Solids & Fluids I Fall ‘09 

Lecture 6 - Finite Element Solution Process 

Prof. K. J. Bathe MIT OpenCourseWare 

In the last lecture, we used the principle of virtual displacements to obtain the following equations: 

KU = R (1) 

K = Σ K(m) ; K(m) = B(m)T C(m)B(m)dV (m) 

m V (m) 

R = RB + RS 

RB = Σ RB 
(m) ; RB 

(m) = H(m)T fB(m)dV (m) 

m V (m) 
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m S S i i(m) f 
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RS = Σ R(m) ; R
(m) = Σ HS

i(m)
T fS

i(m) 

dS
i(m) 
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u(m) = H(m)U (2) 
↓ 

ε(m) = B(m)U (3) 

Note that the dimension of u(m) is in general not the same as the dimension of ε(m). 

Example: Static Analysis 

Reading assignment: Example 4.5 
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Lecture 6 Finite Element Solution Process 2.092/2.093, Fall ‘09 

Assume: 

i. Plane sections remain plane 

ii. Static analysis no vibrations/no transient response → 

iii. One-dimensional problem; hence, only one degree of freedom per node 

Elements 1 and 2 are compatible because they use the same U2. Next, use a linear interpolation function. 
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13 2The “equivalent cross-sectional area” of element 2 is A = 3 cm . This equivalent area must lie between the 
areas of the end faces A = 1 and A = 9. 
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We note: 

•	 Diagonal terms must be positive. If the diagonal terms are zero or negative, then the system is unstable 
physically. A positive diagonal implies that the degree of freedom has stiffness at that node. 

•	 K is symmetric. 

•	 K is singular if rigid body motions are possible. To be able to solve the problem, all rigid body modes 
must be removed by adequately constraining the structure. i.e. K is reduced by applying boundary 
conditions to the nodes. 

The K used to solve for U is, then, positive definite (det K > 0). This ensures that the elastic strain energy 
is positive and nonzero for any displacement field U . In the analysis, each element is in equilibrium under 
its nodal forces, and each node is in equilibrium when summing element forces and external loads. 

Homework Problem 2 

⎤⎡⎤⎡ 
∂u εxx⎣ ⎦ = ⎣ ∂x ⎦ 

εzz 
u
x 
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εzz is frequently called the “hoop strain”, εθθ. 

2π(u + x) − 2πx u 
εzz = = 

2πx x
⎡ ⎤ 
E 1 ν 

C = ⎣ ⎦

1 − ν2 

ν 1


fB = ρω2R N/cm3 ; R = x
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