2.092/2.093 — Finite Element Analysis of Solids & Fluids I

Lecture 6 - Finite Element Solution Process

Prof. K. J. Bathe MIT OpenCourseWare

Fall ‘09

In the last lecture, we used the principle of virtual displacements to obtain the following equations:
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Note that the dimension of «(™ is in general not the same as the dimension of (™),

Example: Static Analysis

Reading assignment: Example 4.5
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Assume:
i. Plane sections remain plane
ii. Static analysis — no vibrations/no transient response
iii. One-dimensional problem; hence, only one degree of freedom per node

Elements 1 and 2 are compatible because they use the same Us,. Next, use a linear interpolation function.
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The “equivalent cross-sectional area” of element 2 is A = 1—?? em?. This equivalent area must lie between the
areas of the end faces A =1 and A =09.
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Element 2 is treated as a block 2

with constant cross-sectional 37

24 —24 0

K= - 24 154 —13
40| T -

0 —-13 13

We note:

e Diagonal terms must be positive. If the diagonal terms are zero or negative, then the system is unstable
physically. A positive diagonal implies that the degree of freedom has stiffness at that node.

e K is symmetric.

e K is singular if rigid body motions are possible. To be able to solve the problem, all rigid body modes
must be removed by adequately constraining the structure. i.e. K is reduced by applying boundary
conditions to the nodes.

The K used to solve for U is, then, positive definite (det K > 0). This ensures that the elastic strain energy
is positive and nonzero for any displacement field U. In the analysis, each element is in equilibrium under
its nodal forces, and each node is in equilibrium when summing element forces and external loads.

Homework Problem 2
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€, is frequently called the “hoop strain”; egg.

2r(u + x) — 27z
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