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Lecture 4 - The Principle of Virtual Work 

Prof. K. J. Bathe MIT OpenCourseWare 

Su = Surface on which displacements are prescribed 
Sf = Surface on which loads are applied 
Su ∪ Sf = S ; Sf ∩ Su = ∅ 

Given the system geometry (V, Su, Sf ), loads (fB , fSf ), and material laws, we calculate: 

Displacements u, v, w (or u1, u2, u3)• 

Strains, stresses • 

We will perform a linear elastic analysis for solids. We want to obtain the equation KU = R. Recall our 
truss example. There, we had element stiffness AE . To calculate the stiffnesses, we could proceed this way: Li 
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uEvery differential element should satisfy EA d
2 

= 0. To obtain F, we solve: dx2 

; u = 1.0 ; u 
d2u 

= 0 = 0 EA 
dx2 x=0 x=Li 

Consider a 2D analysis: 

In this case, the method used for the truss problem to get the stiffness matrix K would not work. In general 
3D analysis, we must satisfy (for the exact solution) 

•	 Equilibrium: 

I.	 τij,j + fi
B = 0 in V(i, j = 1, 2, 3), where τij are the Cauchy stresses (forces per unit area in the 

deformed geometry). 

II. τij nj = fi
Sf on Sf 

Compatibility: ui = u Si 
u on Su and all displacements must be continuous. • 

Stress-strain laws • 

This is known as the differential formulation. 

Example 

Reading assignment: Section 3.3.4 

•	 Equilibrium 
d2u 

EA + fB = 0	 (a) 
dx2 

du 
EA = R (b) 

dx x=L 
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• Compatibility 

u = 0 (c) 
x=0 

Stress-strain law • 
du 

τxx = E (d) 
dx 

In a 1D problem, nodes are surfaces. 

In a 2D problem, we define line × thickness = surface, but one point can belong to both Sf and Su. 

Principle of Virtual Work (Virtual Displacements) 

Clearly, the exact solution u(x) must satisfy: 

d2u 
+ fB δu(x) = 0 (1) EA 

dx2 

where δu(x) is continuous and zero at x = 0. Otherwise, it is an arbitrary function. Hence, also, 

� L d2u 
+ fBEA 

dx2 
0 

δu(x)dx = 0 (2) 
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From Eq. (2):

EA
du

dx
δu

∣∣∣∣L
0

−
∫ L

0

dδu

dx
EA

du

dx
dx +

∫ L

0

fBδudx = 0 (A)

The equation above becomes:

Internal virtual work︷ ︸︸ ︷∫ L

0

dδu

dx
EA

du

dx
dx =

External virtual work︷ ︸︸ ︷∫ L

0

fBδudx +

Virtual work due to
boundary forces︷ ︸︸ ︷

Rδu
∣∣∣
L

where dδu
dx are the virtual strains, du

dx are the real strains, and δu are the virtual displacements. We set δu = 0
on Su, since we do not know the external forces on Su. To solve EAd2u

dx2 + fB = 0, we look for a function u

where d2u
dx2 exists (du

dx should be continuous). In order to calculate the virtual work, we look for the solutions
where only u is continuous.

(A) can be written as: ∫ L

0

εxxEAεxxdx =
∫ L

0

ufBdx + RuL (A’)

(the bar denotes ‘virtual’ quantities)

In 3D vector form, the principle of virtual work now becomes∫
V

εT CεdV =
∫

V
uT fBdV +

∫
Sf

uSf T fSf dSf (B)

ε =


εxx

εyy

εzz

γxy

γyz

γzx

 ; εxx =
∂u

∂x

ε =


εxx

εyy

εzz

γxy

γyz

γzx

 ; εzz =
∂u

∂z

We see that (B) is the generalized form of (A’). The principle of virtual work states that for any compatible
virtual displacement field imposed on the body in its state of equilibrium, the total internal virtual work is
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equal to the total external virtual work. Note that this variational formulation is equivalent to the differential 
formulation, given earlier. 
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