2.092/2.093

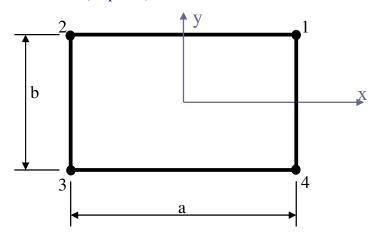
FINITE ELEMENT OF SOLIDS AND FLUIDS I

FALL 2009

Homework 5- solution

Instructor: Prof. K. J. Bathe Assigned: Session10 TA: Seounghyun Ham Due: Session12

Problem 1 (20 points):



$$h_1 = \frac{1}{4} \left(1 + \frac{2x}{a} \right) \left(1 + \frac{2y}{b} \right)$$

$$h_2 = \frac{1}{4} \left(1 - \frac{2x}{a} \right) \left(1 + \frac{2y}{b} \right)$$

$$h_3 = \frac{1}{4} \left(1 - \frac{2x}{a} \right) \left(1 - \frac{2y}{b} \right)$$

$$h_4 = \frac{1}{4} \left(1 + \frac{2x}{a} \right) \left(1 - \frac{2y}{b} \right)$$

$$u = \begin{bmatrix} h_1 & h_2 & h_3 & h_4 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}, v = \begin{bmatrix} h_1 & h_2 & h_3 & h_4 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}$$

$$\varepsilon_{xx} = \frac{\partial u}{\partial x} = \begin{bmatrix} h_{1,x} & 0 & h_{2,x} & 0 & h_{3,x} & 0 & h_{4,x} & 0 \end{bmatrix} \underline{U}$$

$$\varepsilon_{yy} = \frac{\partial v}{\partial y} = \begin{bmatrix} 0 & h_{1,y} & 0 & h_{2,y} & 0 & h_{3,y} & 0 & h_{4,y} \end{bmatrix} \underline{U}$$

where
$$\underline{U}^T = \begin{bmatrix} u_1 & v_1 & u_2 & v_2 & u_3 & v_3 & u_4 & v_4 \end{bmatrix}$$
; $\varepsilon_{zz} = 0$

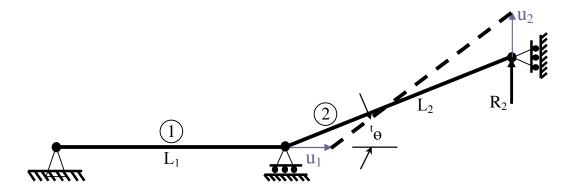
As
$$\varepsilon_V = \varepsilon_{xx} + \varepsilon_{yy}$$

$$\therefore \mathcal{E}_{V} = \underline{B}_{\mathcal{E}V} \underline{U} = \begin{bmatrix} h_{1,x} & h_{1,y} & h_{2,x} & h_{2,y} & h_{3,x} & h_{3,y} & h_{4,x} & h_{4,y} \end{bmatrix} \underline{U}$$

Hence

$$\underline{K} = t \int_{-\frac{b}{2}}^{\frac{b}{2}} \int_{-\frac{a}{2}}^{\frac{a}{2}} \beta \underline{B}_{\varepsilon V}^{T} \underline{B}_{\varepsilon V} dx dy$$

Problem 2 (20 points):



Assuming tension in the bar as positive, the equilibrium of the joints gives:

$${}^{t}P_{1} - {}^{t}P_{2}\cos{}^{t}\theta = 0$$
 (1) $R_{2} - {}^{t}P_{2}\sin{}^{t}\theta = 0$ (2)

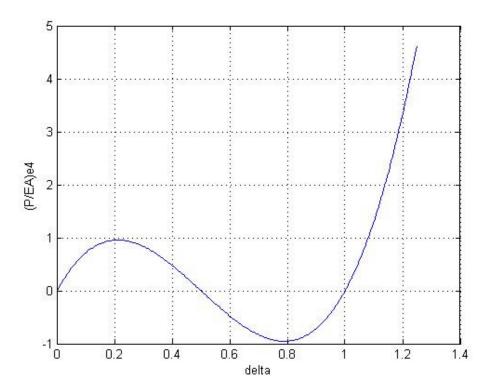
$$^{t}P_{1} = \frac{EA}{L_{1}} {^{t}u_{1}}, \quad {^{t}P_{2}} = \frac{EA}{L_{2}} \delta L_{2}$$
 (3)

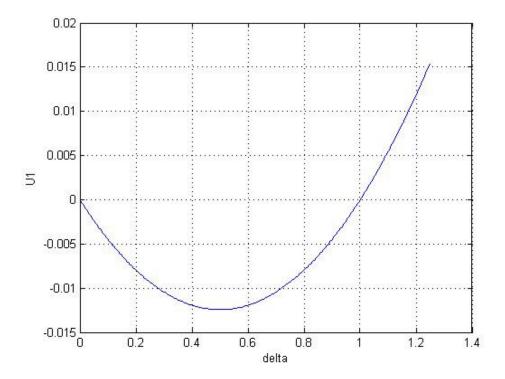
where
$$\delta L_2 = \sqrt{(5 - {}^t u_1)^2 + (0.5 + {}^t u_2)^2} - L_2$$
 (4)

From the geometry,
$$\tan^{t}\theta = \frac{0.5 + {^{t}u_2}}{5 - {^{t}u_1}}$$
, ${^{t}u_2} = -\Delta$, $R_2 = -P$ (5)

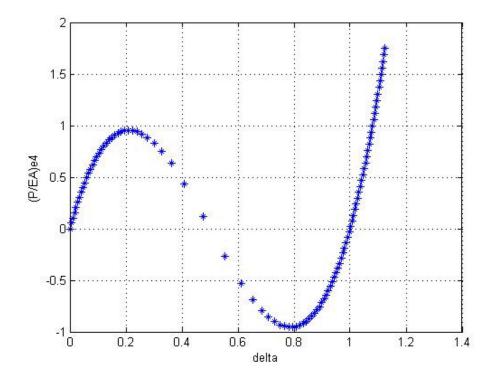
Eq. (1) and (2) are the force equilibrium equations. We use them by assuming a Δ , solving from equation (1) for tu_1 , then substituting tu_1 and Δ into the equation (2) to obtain the corresponding P. We can also solve them in different way. We first assume te and then calculate tu_1 and Δ .

$$\frac{P}{EA} \times 10^4 \text{ Vs. } \Delta$$





 $\frac{P}{EA} \times 10^4 \text{ Vs. } \Delta \text{ Using ADINA}$



MIT OpenCourseWare http://ocw.mit.edu

 $2.092\,/\,2.093$ Finite Element Analysis of Solids and Fluids I $_{\rm Fall}\,2009$

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.