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Homework 1- solution
Instructor: Prof. K. J. Bathe Assigned: Sess‘ on3
TA: Seounghyun Ham Due: Session 5

Problem 1 (30 points):

The truss geometry is shown below. Bar mumbers are circled. Joint numbers are placed
adjacent to their respective joints.

For a linear static analysis, we have:
KgxsUsx1=Rgx1

a) The K matrix is calculated column by column. The i"™ column of the stiffness
matrix represents the external force vector required to give the structure unit
displacement about the i degree of freedom and zero displacement about all other
degree of freedom. Take a look at one example how to construct it.

Calculate column 5:
Imposing the following displacement pattern:

Us=1, U;=U=U3=U4=U=U,=Us=0



The resulting external force vector under this set of displacement conditions is equal
to the 5™ column of the stiffness matrix K. In this case, the truss bar 1 changes length

by 1, the truss bar 5 shrinks by %/E, and all other truss bars are fixed in length.
Hence, the bar axial forces are as follows.

AE AE
N =— ,N,=N,=N,=0,N,=——
a 2a

Positive and negative signs of the axial forces imply tension and compression,
respectively. Hence the reaction forces, the entries of the 5™ column, are obtained

from the equilibrium equations at the joints.
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K.=K,=—— K. .= (——+1),K,. =—— K,,=——— K,.=K,. =K,. =0
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After assembling all columns, the following K is determined:
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b) Since U, =U, =U, =U, =U, =0, we can reduce Kg,sUsx1=Rgx; to K,,U,=R,

as follows:
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The solution is
U, 0
U, |=-2| 476x10* |x10°*
EA y
U, -1.24%10

¢) Since we know the values of U,, U, and U, we can calculate the reaction forces

from Ky, U,=Ry,

R .
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The undeformed and deformed meshes with applied boundary conditions and loads

are plotted on the next page.
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To calculate all internal forces, let’s draw the equilibrium diagram for each joint.

R=1.2426x10*N
P=6x10° N

R @ 1,4142R

o ONNyA

3.8284R 0 A4142R
¢ 3.8284R® P=4.8284R
3.8284R ' '

Therefore, the internal forces are
Element 1: tension 4.7572x10* N

Element 2: no force




Element 3: tension 1.2426x10* N
Element 4: no force

Element 5: Compression 1.7573x10* N

'R [-1.24x10"]
R, —1.24x10"
R, 0

and Reactions: R, = 1.24x10° N
R, 6x10°
R, 0
R | |-4.76x10*
R| | o |

d) We can make sure that element 3 and joint 3 are in equilibrium explicitly by the
diagram below.

1.2424x10°N

1.2424x10*N

T 1.2424x10*N

1.2424x10*N




External forces acting on structure.

12.4kN 12.4kN

12.4kN

» 60KN

12.4kN

D> F, =—12.4kN —47.6kN +60kN =0
2

F =12.4kN —12.4kN =0

>'M,, =-124kNxa—47.6kN xa+60kN xa =0

Therefore, the structure is in equilibrium.

Question: Why does the joint 3 not move horizontally? Assume you have not
calculated the detailed solution given above. Give your answer and a physical reason.
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