Interpolation

Introduction

AT Patera

2.086 Interpolation

February 5, 2013

AT Patera

1

2.086 Interpolation

February 5, 2013

world X

Approximation accuracy replace $x \to f(x)$ with $x \to (Af)(x) \approx f(x)$

A: {I, P, ~ tow is Af commected to f?

The p, ad hoc, what is Af?

2.086 Interpolation

February 5, 2013

3

AT Patera

2.086 Interpolation

Formulation

interval a < x < b

$$x_i$$
 $x_{i+1} = x_i + h$

AT Patera

2.086 Interpolation

February 5, 2013

2.086 Interpolation

February 5, 2013

over Si: $(x_i,f(x_i)$ Xi

$$x_i$$
 \overline{x}^1 : left endpoint of s_i

what

 $(\mathcal{I}f)(x)$: constant over s_i
 $(\mathcal{I}f)(x) = f(x_i)$

how

 \overline{x}^1

over a = x = b:

AT Patera

2

2.086 Interpolation

7

2.086 Interpolation

Error Analysis f'continuous

$$|f(x) - (If)(x)| = |f(x) - f(x_i)| \quad x \text{ m. } S_i$$

$$= |\int_{x_i}^{x} f'(\xi) d\xi|$$

$$\leq \int_{x_i}^{x} |f'(\xi)| d\xi \quad |\int_{x_i}^{x} |f'(\xi)| d\xi$$

$$\leq \max_{x \in S_i} |f'| \int_{x_i}^{x} d\xi$$

$$\leq \lim_{x \in S_i} |f'| \quad \text{any } x \text{ m. } S_i$$

 $e_i = \max_{x \text{ in } S_i} |f(x) - (\mathcal{I}f)(x)| \leq h \max_{x \text{ in } S_i} |f'|$ $e_{\text{max}} = \max_{\text{all } S_i} |f(x) - (\sum f)(x)| \leq h \max_{\text{all } S_i} |f'|$ $a \leq x \leq b$ 1/N-1emax < Ch C = max all si | f' |

Independent of h

AT Patera

2.086 Interpolation

February 5, 2013

AT Patera

2.086 Interpolation

February 5, 2013

emax < Ch for any h

emax & Ch as h > 0 "big Oh" $e_{\text{max}} = \bigcirc(h)$

also (here)

 $e_{\text{max}} \sim C h \iff \frac{e_{\text{max}}}{C h} \rightarrow 1 \text{ as } h \rightarrow 0$ asymptotic

later $e_{max} \leq Ch^{P}$: (as $h \Rightarrow 0$) convergence: $e_{max} \rightarrow 0$ as $h \rightarrow 0$ convergence rate: order p how p=1: first order (e.g. precewise-constant, left-endpoint) P=2: second order

AT Patera

2.086 Interpolation

February 5, 2013

13

2.086 Interpolation

February 5, 2013

14

(storage)

Offline:

AT Patera

evaluate $\tilde{x}_i \rightarrow f(\tilde{x}_i)$ 1 = i = Neval (and store) expensive

Online: given x segment which contains x

(i) find x_{i*} : $x_{i*} \leq x \leq x_{i*+1}$

h: O(1) FLOPs $h_i: O(\log N_{aval}), O(N_{aval})$ FLOPs $i^* = floor(\frac{n}{2})+1$ binary chop comparison

(ii) "look up" $f(\tilde{x}_{i}*)$ O(1) FLOPs

4

AT Patera 2.086 Interpolation

15

2.086 Interpolation

February 5, 2013

16

Nomenclature:

FLOPS: Floating Point Operations z = 2 + 3 * 4 2 FLOR

O(g(K)): K: "size" of problem Operation count = O(g(K)) FLORs operation count $\leq c g(K)$ FLOTS as $K \Rightarrow \infty$ [e.g. $O(K^2 + K) = O(K^2)$]

The Game:

Method I

AT Patera

2.086 Interpolation

February 5, 2013

17

AT Patera

2.086 Interpolation

February 5, 2013

18

error K Neval

Method II

Formulation

interval a < x < b

Piecewise - Linear

segments

$$\begin{array}{ccc}
S_{i} \\
\chi_{i} & \chi_{i+1} = \chi_{i} + h
\end{array}$$

AT Patera

2.086 Interpolation

February 5, 2013

21

AT Patera

2.086 Interpolation

February 5, 2013

over Si: Xi

$$(2f)(x)$$
: linear over S_i
 $(2f)(x_i) = f(x_i); (2f)(x_{i+1}) = f(x_{i+1})$

$$\Rightarrow$$
 $(\mathcal{X}_i)(x) = f(x_i) + \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} \cdot (x - x_i)$

over a < x < b

Error Amalysis

f" continuous

Devotion Count

$$e_{max} = max_{a \le x \le b} |f(x) - (Tf)(x)|$$

$$\leq Ch^{2} \qquad \Rightarrow O(h^{2})$$

$$for C = \frac{1}{B} max_{a \le x \le b} |f''(x)|$$

$$\Rightarrow Piccevise-linear is second order$$

$$DEMO(b-a=1)$$

AT Patera

2.086 Interpolation

February 5, 2013

AT Patera

2.086 Interpolation

February 5, 2013

Offline:

evaluate $\tilde{x}_i \rightarrow f(\tilde{x}_i)$ 1 $\leq i \leq N_{\text{eval}}$ (and store) _ expensive

Online: given x segment which

(i) find x_{i*} : $x_{i*} \leq x \leq x_{i*+1}$

h: O(1) FLOPs h: O(log Naval), O(Neval) FLOPs

(ii) "look up" $f(\tilde{x}_{i}*) \rightarrow r$, $f(\tilde{x}_{i}*_{1}) \rightarrow s$ $(\mathcal{I}f)(x) = r + \frac{s-r}{x_*-x_*} \cdot (x-x_*)$ 4 FLOPS Perspectives

7

2.086 Interpolation

27

2.086 Interpolation

What if

- f(x) is not smooth? f, f', f''...

- f(x) undergoes rapid variation? f',f''...

- we wish to consider higher-order interpolants, (If)(x): Piecewke-quadratic, - cubic, ...?

- we wish to estimate the error

$$\chi \rightarrow \begin{cases} (\mathcal{I}f)(x), \text{ and} \\ \Delta(x) \text{ such that } |f(x) - (\mathcal{I}f)(x)| \approx \Delta(x) \end{cases}$$
?

What if

- we wish to incorporate derivative conditions,

$$(\mathcal{I}f)'(x_i) = f'(x_i), \dots$$
²

- evaluation of f(x) is not exact?

$$x \rightarrow f(x) + error \sim FP arithmetic,...$$

noise ~ measurement,...

- we wish to exploit "ad hoc" information

$$f(x) = \beta_0 + \beta_1/x$$
 β_0, β_1 unknown?

AT Patera

2.086 Interpolation

February 5, 2013

AT Patera

2.086 Interpolation

MIT OpenCourseWare http://ocw.mit.edu

2.086 Numerical Computation for Mechanical Engineers Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.