
Quiz 2 Self-Study Guide 2.086/2.088/2.087 Spring 2013

Quiz 2 will focus on the material of Unit III and Unit IV: the material addressed in the lectures
or the lecture notes; and the material addressed in Assignments 3 and 4 (and associated Matlab
tutorials). Quiz 2 will not include material from Unit V or Assignment 51 but will include the
linear algebra and related Matlab concepts developed in Unit III.

In this guide we propose a few questions which might help you review your understanding of the
material and focus your study effort accordingly. Note in most cases we do not state the questions
overly precisely, nor do we provide any specific answers; we ask you to decide, as part of the study
process, how best to pose the question, and how best to interpret and challenge your answers. We
will spend some time in lecture (on Tuesday, 30 April) working through the questions and answers
together.

1. This question relates to vector and matrix operations. Note in all cases we refer to linear
algebra operations.

Define two 4 × 1 vectors v and w. Define two 4 × 4 matrices A and B. Also define the 4 × 1
vector z = (0 0 −1 0)T (in Matlab, z = [0;0;-1;0]).

Calculate the inner product vTw “by hand”; confirm your result with Matlab.

Define p = Aw. Calculate p2 (the second element of the vector p) “by hand”; confirm your
result with Matlab. This is a good opportunity for two-handed multiplication: recall the
ith element of p is the inner product of the ith row of A with the vector w.

Define q = Az. Calculate all entries of q “by hand”; confirm your result with Matlab. This
is a good opportunity for one-handed multiplication: recall that q is the sum over j of the jth

column of A weighted by zj .

Define C = AB. Calculate C1 2 (the element of C in the first row and second column) “by
hand”; confirm your result with Matlab. Recall that the entry Ci j is given by the inner
product of the ith row of A and the jth column of B.

Define two matrices R and S for which RS is defined but SR is not defined. Confirm your
result with Matlab — Matlab should give an error message if the matrices do not have
the correct “size” for matrix-matrix multiplication.

2. This question relates to least squares, regression analysis, and joint confidence intervals. (Note
that, on the quiz, we will not ask you to derive the formulas for joint confidence intervals,
though we may well ask you to apply the formulas provided in the lecture notes.)

We consider here measurements which take the form

Yi = Ymodel(xi;β
true) + εi , 1 ≤ i ≤ m , (1)

for
Ymodel(x;β) = β0 + β1x ; (2)

1Since you are not responsible for the material of Assignment 5 on Quiz 2 you can also safely assume that there
will be no questions related to power iteration or inverse power iteration even though this material is nominally part
of Unit IV.
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here βtrue = (βtrue0 βtrue1 )T and β = (β T
0 β1) . Note that x is our independent variable: the xi,

1 ≤ i ≤ m, are the values of x at which we take the respective measurements Yi, 1 ≤ i ≤ m;
there are m measurements in total. We assume that the noise satisfies our assumptions N1,
N2, and N3 with standard deviation σ. In short, we are fitting a straight line to noisy data.

You can create “synthetic” data in order to exercise your least squares and regression skills.
In particular, the Matlab code

clear

m = ?; % for you to specify, and ultimately vary

xpts = linspace(0,1,m)'; % for simplicity let x vary from 0 to 1

beta_0_true = ? ; % set to any value you choose

beta_1_true = ?; % set to any value you choose

sigma_true = ?; % set to any value you choose, but presumably not too large

Y = beta_0_true + xpts*beta_1_true + sigma_true*randn(m,1);

creates for you a dataset and in particular a dataset for which you know the truth. Here m

corresponds to m; xpts(i) corresponds to xi, 1
true

≤ i ≤ m; beta_0_true and beta_1_true

correspond to β0 and βtrue1 , respectively; sigma_true corresponds to σ; and Y(i) = Yi,
1 ≤ i ≤ m, is our (synthetic) data. Note each time you run the script you generate a new
dataset since randn will generate new random variates (with zero mean and unit standard
deviation).

Now add to the script above code which computes the least squares approximation to βtrue,
ˆwhich we typically denote β; our estimate for σ, which we typically denote σ̂m; and joint

confidence intervals (at the 95% confidence level) for βtrue0 and βtrue1 . Is your estimate for
true ˆβ , β, close to the anticipated value? Is your estimate for σ, σ̂m, close to the anticipated

value? Do your confidence intervals contain βtrue — should they (always) contain βtrue?

What happens as you increasem, the number of (synthetic) measurements? Do your estimates
β̂ and σ̂m improve? Do your confidence intervals become tighter? What quantity in the
confidence interval expressions changes most significantly as you increase m?

3. This question relates to ordinary differential equations and in particular initial value problems.

Consider the equation
du

=
dt

−a t u , 0 ≤ t ≤ tf , (3)

with initial condition
u(t = 0) = u0 , (4)

for the particular case of a = 1, tf = 10, and u0 = 1. Note this is similar to the model
problem studied in class except that here λ is replaced by −a t and hence is time-dependent;
however, our schemes are defined generally for any right-hand-side “dynamics” g(t, u), and
hence we can readily treat this new equation.

Can you find the exact solution to this equation? (This is not so crucial for 2.086. As a hint:
in a first step, you can derive the relationship ln(u/u0) = −at2/2.)

Consider the Euler Forward scheme applied to Equations (3), (4): denote the approximation
jũEF, 0 ≤ j ≤ J , as in the lecture notes and textbook (but here we add the subscript EF).

j=1Recall that ũ0EF = u0. Implement the scheme in Matlab. Find ũEF for J = 100 “by hand.”
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Compare your Matlab code result with your “by hand” prediction. Compare your Matlab
code result with the exact solution. Now run your Matlab code for J = 5 — can you explain
the (poor) results for J = 5?

Consider the Euler Backward scheme applied to Equations (3), (4): denote the approximation
jũEB, 0 ≤ j ≤ J , as in the lecture notes and textbook (except here we add the subscript EB).

0 j=1Recall that ũEB = u0. Implement the scheme in Matlab. Find ũEB for J = 100 “by hand.”
Compare your Matlab code result with your “by hand” prediction. Compare your Matlab
code result with the exact solution. Now run your Matlab code for J = 5 — can you explain
why Euler Backward performs better than Euler Forward for J = 5?

Apply ode45 to the problem Equations (3), (4) but now for general a, tf , and u0. This is a
good opportunity to exercise your Matlab anonymous function skills. Compare the ode45

solution to the exact solution or to your Euler Forward or Euler Backward approximations.

4. This question relates to eigenproblems and linear stability analysis.

A simple predator prey model is given by

dw1
= w1 − 2w1w2 , (5)

dt

dw2
= w2 + w1w2 , (6)

dt
−

where w1 represents the size of the prey population and w2 represents the size of the preda-
tor population. We also provide initial conditions, though these are not important for our
purposes here. (In actual practice, we would only be interested in positive solutions to these
equations, however you can ignore this issue in your investigation below.)

This solution has two equilibria given by w = (0 0)T and w = (1 1/2)Tex co (where “ex”
refers to extinction and “co” refers to co-existence). Determine the linear stability of these
two equilibria “by hand” and with the Matlab built-in function eig.

We review the steps of linear stability analysis (for any given equilibrium): linearize the equa-
tions about the equilibrium; assume exponential behavior in time to derive the eigenproblem;
find the eigenvalues; inspect the eigenvalues to conclude “unstable,” “stable,” or “marginal-
ly/neutrally stable.” (Recall that “marginally/neutrally stable” indicates that we are unable
to conclude from linear stability analysis whether the equilibrium is stable or unstable.)

You may wish to also find, say in the case of the extinction equilibrium, the eigenvector
associated with the eigenvalue with the maximum (in the sense of most positive) real part.
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