
Assignment 2   

Released: Friday, 22 February, at 5 PM. 

Due: Friday, 15 March, at 5 PM. 

Upload your solution   as a zip file “YOURNAME_ASSIGNMENT_2” which includes the script for each 
question as well as all Matlab functions (of your own creation) called by your scripts; both 
scripts and functions must conform to the formats described in Instructions and Questions 
below. You should also include in your folder all the grade_o_matic .p files for Assignment 2. 

Instructions 

Before embarking on this assignment you should 

(1) Complete the Textbook reading for Unit II      

(2) Execute (“cell-by-cell”) two Matlab Tutorials      

a tutorial on Matlab Functions (Rec4) ; 
a tutorial on Matlab Double Index Arrays (Rec 5). 

(3) Download       the Assignment_2_Materials folder. This folder contains a template for the 
script associated with each question (A2Qy_Template for Question y), as well as a template 
for each function which we ask you to create (func_Template for a function func). The 
Assignment_2_Materials folder also contains the grade_o_matic codes needed for 
Assignment

 
2.  (Please  see  Assignmen t 1  for  a  description  of grade_o_matic.)  

We indicate here several general format and performance requirements: 

(a.) Your script for Question y of Assignment x must be a proper Matlab “.m” script file 
and must be named AxQy.m. In some cases the script will be trivial and you may submit 
the template “as is” — just remove the _Template — in your “YOURNAME_ASSIGNMENT_2 
folder. But note that you still must submit a proper AxQy.m script or grade_o_matic_A2 
will not perform correctly. 

(b.) In this assignment, for each question y, we will specify inputs and outputs both for 
the script A2Qy and (as is more traditional) any requested Matlab functions; we shall 
denote the former as script inputs and script outputs and the latter as function inputs 
and function outputs. For each question and hence each script, and also each function, 
we will identify allowable instances for the inputs — the parameter values or “parameter 
domains” for which the codes must work. 

(c.) Recall that for scripts, input variables must be assigned outside your script (of course 
before the script is executed) — not inside your script — in the workspace; all other 
variables required by the script must be defined inside the script. Hence you should test 
your scripts in the following fashion: clear the workspace; assign the input variables 
in the workspace; run your script. Note for Matlab functions you need not take such 
precautions: all inputs and outputs are passed through the input and output argument 
lists; a function enjoys a private workspace. 
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(d.) We ask that in the submitted version of your scripts and functions you suppress all 
display by placing a “;” at the end of each line of code. (Of course during debugging 
you will often choose to display many intermediate and final results.) We also require 
that before you upload your solution  you should run grade_o_matic_A2 (from your 
YOURNAME_ASSIGNMENT_2 folder) for final confirmation that all is in order. 

· 

Questions 

1. (10 points) Write a script which, given a 20 × 40 array M, performs the following operations 
(in sequence): 

(i) creates a new 20 × 40 array, D, which is all zeros except D(i,i) = 1 for 1 ≤ i ≤ 20 and 
D(i,i+20) = 2 for 1 ≤ i ≤ 20; 

(ii) creates a new 20 × 40 matrix A as the sum of the corresponding entries of arrays M and 
D — for example, A(1,2) = M(1,2) + D(1,2); 

(iii) creates a new 20 × 40 array, B, which is the same as array A except row 11 for which 
B(11,j) = 1/j, for 1 ≤ j ≤ 40; 

(iv) creates a new 20 × 41 array, C, which is the same as array B for columns 1 through 40 
but also includes a column 41 in which all elements are assigned the value 3; 

(v) creates a new 20 × 41 array, P, which is the same as array C except the first ten entries 
on the main diagonal for which P(i,i) = .1 * i * C(i,i), for 1 ≤ i ≤ 10; 

(vi) creates a new 20 × 41 array, Q, which is the same as array P except the (1,2) entry for 
which Q(1,2) is assigned the value 7; 

(vii) creates a new 20 × 41 array, R, in which each element is the square of the corresponding 
element in array Q — for example, since Q(1,2) = 7 then R(1,2) = 49; 

(viii) creates a scalar bigsum which is the sum of all the elements (820 in total) of the array 
R. 

No functions are required for this question.  

The script takes a single script input: the input is a 20 × 40 array M and must correspond  
in your script to Matlab variable M; the allowable instances, or input parameter domain,  
is given by abs(M(i,j)) ≤ 10, 1 ≤ i,j ≤ 10. The script yields a single script output: our  
output is the scalar bigsum and must correspond in your script to Matlab (scalar) variable  
bigsum. The template is provided in A2Q1_Template.  

2.	 (12 points) A manufacturer installs a quality control sensor system on an assembly line in 
order to reduce the number of flawed parts shipped to customers. We denote by DECISION 
a random “variable” which represents the sensor system action. The random variable DE­
CISION can take on two “values”: DECISION = ACCEPT — accept the part and ship to 
customer; DECISION = REJECT — reject the part and recycle the material (i.e, do not ship 
to customer). We denote by PART a random “variable” which represents the quality of the 
part. The random variable PART can take on two “values”: PART = UNFLAWED — the 
part meets the necessary quality standards, and is thus unflawed (i.e., without flaws); PART 
= FLAWED — the part does not meet the necessary quality standards, and is thus flawed. 
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Although in principle we might hope that the sensor system will accept all parts which  
are unflawed and furthermore accept only parts which are unflawed, in actual practice the  
sensor system will not be perfect: it may not accept some parts which are unflawed, and  
it may accept some parts which are flawed. The developer of the sensor system, based on  
simulation results, provides the following conditional probabilities: P(DECISION = ACCEPT  
| PART = UNFLAWED) = 0.95; P(DECISION = ACCEPT | PART = FLAWED) = 0.02.  
Furthermore, the manufacturer of the part, based on historical data, provides the marginal  
probability P(PART = FLAWED) = 0.03.  

(i) (4 points) The marginal probability P(DECISION = ACCEPT) is 

(a) 0.9700 
(b) 0.9221 
(c) 0.9500 
(d) 0.9800 

Hint: Express the marginal probability as a sum of joint probabilities; express the joint 
probabilities in terms of conditional and (other) marginal probabilities. 

(ii) (4 points) The conditional probability P(PART = FLAWED | DECISION = ACCEPT) 
is 

(a) 0.05000 
(b) 0.00060 
(c) 0.00065 
(d) 0.02000  

Hint: Consider Bayes’ Theorem.  

(iii) (4 points) In one month 1,000,000 parts are made on the assembly line. How many  
flawed parts will be (accepted by the sensor and hence) shipped to customers?  
(a) 600 
(b) 30,000 
(c) 650 
(d) 28 
You should choose the answer which is most likely. Hint: Consider the appropriate joint 
probability and then apply the frequentist interpretation of probability. 

The template A2Q2_Template.m contains the multiple-choice format required by grade_o_matic_A2. 

3. (10 points) In this question we consider a discrete random variable X which can take on three 
values, 0 or 1 or 2, according to the probability mass function fX (x) given by 

fX (x) =

⎧ ⎪⎨⎪⎩  

2/5 x = 0 
1/2 x = 1 . (1) 
1/10 x = 2 
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We recall that fX (x) is the probability that the random variable X takes on the value x. We 
also consider a second random variable Y which is a function of X such that 

0 if X = 0 or X = 2 
Y = . (2)

1 if X = 1 

Note that Y can take on only two values, either 0 or 1. 

(i) (2.5 points) The mean of X is 
(a) 1/4 
(b) 1/2 
(c) 7/30 
(d) 7/10 
(e) 1 

(ii) (2.5 points) The standard deviation of X is 
(a) 0.9487 
(b) 0.6403 
(c) 2.0000 
(d) 1.0000 
(e) 0.5000 
Note we are asking for the standard deviation, not the variance. 

(iii) (2.5 points) The mean of Y is 
(a) 1/4 
(b) 1/2 
(c) 7/10 
(d) 7/30 
(e) 1 

(iv) (2.5 points) The standard deviation of Y is 
(a) 0.9487 
(b) 0.6403 
(c) 2.0000 
(d) 1.0000 
(e) 0.5000 
Note we are asking for the standard deviation, not the variance. 

The template A2Q3_Template.m contains the multiple-choice format required by grade_o_matic_A2. 

4. (10 points) Write a function with “signature” 

function [variates_vec] = prob_mass_Q3(n) 
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which returns a row vector variates_vec of n independent random variables (more precisely, 
realizations of independent random variables — random variates) drawn from the probability 
mass function fX (x) of Question 3 as given in Equation (1). 
The function must be named prob_mass_Q3 and furthermore must be stored in a file named 
prob_mass_Q3.m. The function takes a single function input: the input n is a scalar; the 
allowable instances, or parameter domain, is 10 ≤ n ≤ 100, 000. The function yields a single 
function output: the output is the 1× n row vector variates_vec. Note that variates_vec 
must be random not just in terms of the frequencies of the outcomes (x = 0, x = 1, and x = 2) 
but also in terms of the order — such that (say) the first n/2 elements of variates_vec should 
also constitute a sample of i.i.d. random variates from fX . 
The script for this question is provided in A2Q4_Template; no modifications are required 
(except to remove the _Template from the name). 

5. (4 points) Write a function with “signature” 

function [zpts] = unif_over_sym_int(c,n) 

which provides the values zpts(i), 1 ≤ i ≤ n, of n independent (“i.i.d.”) random variates of 
the univariate uniform distribution over the symmetric (about zero) interval -c ≤ z ≤ c. 
The function must be named unif_over_sym_int and furthermore must be stored in a file 
named unif_over_sym_int.m. The function takes two function inputs. The first input is 
the scalar c; the allowable instances, or parameter domain, is 1 ≤ c ≤ 10. The second input 
is the scalar n; the allowable instances, or parameter domain, is 10 ≤ n ≤ 100, 000. The 
function yields a single function output: the output is the 1× n row vector zpts. Note that 
zpts must be random not just in terms of the frequencies of the outcomes but also in terms 
of the order — such that (say) the first n/2 elements of zpts should also constitute a sample 
of i.i.d. random variates from the uniform density over -c ≤ z ≤ c. 
The script for this question is provided in A2Q5_Template; no modifications are required 
(except to remove the _Template from the name). 

6. (10 points) The (univariate) normal density is often a good and also convenient description 
of the outcome of a random phenomenon. However, in the case in which the outcome must 
be positive (on physical grounds, for example a spring constant), a normal random variable 
— which can in principle take on all values negative and positive — can create difficulties. 
In the case in which negative values are very rare, we can justifiably consider a “rectified” 
normal random variable: a zero or negative value is rejected and we draw again from the 
desired normal population until we obtain a positive value. Note this procedure creates a 
density which (is zero for negative values and) has the same shape as the normal density for 
positive values but is uniformly amplified to integrate to unity over the positive real numbers. 
Write a function with signature 

function [xpts_pos] = positive_normal(mu,sigma,n) 

which provides, based on the procedure described above, a vector of (realizations of) n i.i.d. 
(independent, identically distributed) rectified normal random variables drawn from a nor­
mal population with mean mu and standard deviation sigma (note the mean and standard 
deviation are defined for the normal random variables before rectification). 
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The function must be named positive_normal and furthermore must be stored in a file 
named positive_normal.m. The function takes three function inputs. The first two inputs, 
respectively mu and sigma, are scalars; the allowable instances, or parameter domain, is .2 ≤ 
mu ≤ 2 and .05 ≤ sigma ≤ 2*mu. The input n is a scalar; the allowable instances, or parameter 
domain, is 10 ≤ n ≤ 100, 000. The function yields a single function output: the output is 
the 1× n row vector xpts_pos. Note that xpts_pos must be random not just in terms of 
the frequencies of the outcomes but also in terms of the order — such that (say) the first 
n/2 elements of xpts_pos should also constitute a sample of i.i.d. random variates from the 
rectified normal density. 

The script for this question is provided in A2Q6_Template; no modifications are required 
(except to remove the _Template from the name). 

7. (12 points) A spring for a micro-robot suspension is required to have a spring constant	 k 
between klower = 2000 N/m and kupper = 2500 N/m in order to provide the right balance 
between isolation (of the cargo) and control for navigation. The robot manufacturer receives 
a batch of springs from the spring supplier and proceeds to measure the spring stiffness of 
n = 1000 randomly chosen springs from the batch. It is found that, of these 1000 springs, 
987 of the springs do indeed have a spring constant within the desired range — between 2000 
N/m and 2500 N/m; the remaining 13 springs have a spring constant outside the desired 
range. 

To model this situation we introduce a Bernoulli random variable B: a spring constant outside 
the desirable range — K > kupper or K < klower — is encoded as B = 0 and occurs with 
probability 1 − θ; a spring constant inside the desirable range — klower ≤ K ≤ kupper — 
is encoded as B = 1 and occurs with probability θ. Here K is the random variable which 
represents the spring constant and which in turn defines the Bernoulli random variable. We 
wish to determine the parameter θ from our sample of 1000 randomly chosen springs. 

(i) (4 points) Based on the experimental data from the sample of n = 1000 springs, the 
sample-mean estimate for θ is 
(a) 987 
(b) 0.9870 
(c) 0.9500 
(d) 0.0130 

(ii) (4 points) Based on the experimental data from the sample of n = 1000 springs, the 
(two-sided) normal-approximation confidence interval for θ at confidence level γ = 0.95 
is 
(a) [0.9800, 0.9940] 
(b) [0.9834, 0.9906] 
(c) [0.7650, 1.2090] 
(d) can not be evaluated as the normal-approximation criteria (page 178 of textbook) 

are not satisfied 

(iii) (4 points) A value for θ less than 0.97 requires the spring supplier to pay the robot 
manufacturer a penalty, whereas a value for θ greater than 0.99 requires the robot 
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manufacturer to pay the spring supplier a premium. From your result of part (ii) can 
you conclude with confidence level 0.95 that 0.97 < θ < 0.99? 
(a) Yes 
(b) No 
Note you may assume here that our random model for the spring constant K and hence 
Bernoulli variable B is valid (as only in this case can you make rigorous statistical 
inferences). 

The template A2Q7_Template.m contains the multiple-choice format required by grade_o_matic_A2. 

8. (12 points) Consider the following Matlab script 

% begin script 

clear 
% note we "clear" the workspace 

n = 10000; % number of random darts 

u1 = rand(1,n);  
u2 = rand(1,n);  

x1 = u1;  
x2 = 2.*u2;  

addfac = 1.0; 

% BEGIN BLOCK  
numinside = 0;  
for i = 1:n  

if( x2(i) <= my_func(x1(i),addfac) )  
numinside = numinside + 1;  

end  
end  
% END BLOCK 

area_estimate = (numinside/n)*2.0; 

% end script 

and function my_func 

function [value] = my_func(x,yplus)  
value = x.*x + yplus;  
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return  
end  

for approximating an area AD of a domain D by the Monte Carlo method. In the limit that  
n tends to infinity, area_estimate will approach AD.  

(i) (4 points) Each of the bivariate uniform random variates (realizations of random variables 
from the bivariate uniform density) (x1(i),x2(i)), i = 1, . . . , n, will reside in the 
rectangle 
(a) −1 ≤ x1(i) ≤ 1, −1 ≤ x2(i) ≤ 1 
(b) −1 ≤ x1(i) ≤ 1, 0 ≤ x2(i) ≤ 1 
(c) 0 ≤ x1(i) ≤ 1, −1 ≤ x2(i) ≤ 1 
(d) 0 ≤ x1(i) ≤ 1, 0 ≤ x2(i) ≤ 2 

(ii) (4 points) The area AD is given by 
(a) 2/3 
(b) 4/3 
(c) 2 
(d) 3/2 
Hint : draw a sketch in which you indicate the rectangle over which x1,x2 is defined 
(i.e., at which you throw your darts); then include in your sketch the domain D defined 
by the if conditional in BLOCK; finally, recall the area interpretation of the definite 
integral to determine AD. 

(iii) (4 points) Which single line of Matlab code below is equivalent to (and also much more  
efficient than) the entire BLOCK of code in the script above:  
(a) numinside = sum( find( x2 <= my_func(x1,addfac) ) ); 
(b) numinside = sum( x2 <= my_func(x1,addfac) ); 
(c) numinside = length( x2 <= my_func(x1,addfac) ); 
(d) numinside = length( my_func(x1,addfac) ); 
Note by the entire BLOCK of code we refer to the lines of code between the comments 
BEGIN BLOCK and END BLOCK. 

The template A2Q8_Template.m contains the multiple-choice format required by grade_o_matic_A2. 

9. (12 points) Write a function with signature 

function [area_est,area_conf_int] = MC_area(alpha,c,n,x1pts,x2pts) 

which computes, based on the method of Section 12.1.1–12.1.4 (of the textbook), a Monte- 
Carlo estimate (ÂD)n and associated 95% confidence-level (normal-approximation two-sided)  
confidence interval [ciAD ]n for the area of the region  

2 2 2D = {x1 + x2 ≤ 0.75} ∪ {(x1 − α)2 + x2 ≤ 0.75} . (3) 

Note that D is the union of two circles in which the center of the second circle is shifted by  
α (in x1) from the center of the first circle.  
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The function must be named MC_area and furthermore must be stored in a file named 
MC_area.m. The function takes five function inputs. The first input, scalar alpha, is the 
center shift α; the allowable instances, or parameter domain, is 0 ≤ alpha ≤ .2. The second 
input, the scalar c, defines the bounding rectangle (in fact, here a square) R: the lower left 
corner of R is (x1, x2) = (-c,-c) and the upper right corner of R is (x1, x2) = (c,c); the 
allowable instances are 1 ≤ c ≤ 10. The third input is scalar n, the number of random darts; 
the allowable instances, or parameter domain, is 10 ≤ n ≤ 100, 000. The fourth and fifth 
inputs are the coordinates of the n random darts, (x1pts(i),x2pts(i)), 1 ≤ i ≤ n, thrown 
at the square R: x1pts and x2pts are each 1× n array of independent (“i.i.d.”) random 
uniform variates over the interval −c ≤ x1 ≤ c; there are no restrictions on allowable in­
stances (as the number of darts is already controlled by n). The function yields two function 
outputs: the first output is a scalar area_est which is the Monte-Carlo estimate for the area, 
(ÂD)n; the second output is the 1×2 row vector area_conf_int such that area_conf_int(1) 
and area_conf_int(2) are respectively the lower and upper limits of the confidence interval 
[ciAD ]n. 
Two further points: First, in the event that the normal-approximation criteria for the con­
struction of the confidence interval (see page 178 of the textbook) are not satisfied your code 
should return [-1,-1] for area_conf_int. Second, you should use 1.96 for the value of zγ 
for γ = 0.95. 
In order to test your function MC_area for any desired (alpha and) c and n you must 
first generate the random darts x1pts,x2pts. Note, however, that for purposes of grad­
ing, grade_o_matic_A2 will automatically generate appropriate inputs x1pts,x2pts for your 
function — no action needed on your part. 
The script for this question is provided in A2Q9_Template; no modifications are required 
(except to remove the _Template from the name). 

10. (8 points) We ask you here to reconsider from a theoretical perspective some aspects of earlier 
more computational questions. Note that although we intend you to derive your answers from 
analysis rather than computation you may certainly take advantage of your codes to confirm 
your theoretical predictions. 

(i) (4 points) In Question 6 the cumulative distribution function of the rectified normal 
random variable X is given by 
(a) (Φ(x−µ ))2, x > 0 ;σ 

x−µ µ(b) Φ( )/(1 − Φ(− )), x > 0 ;σ σ 

x−µ −µ(c) Φ( σ )/Φ( σ ), x > 0 ; 

(d) Φ(x−µ ), x > 0 ;σ 
here µ and σ refer here to the mean and standard deviation of the unrectified normal 
random variable from which the rectified normal variable X is derived. Note that Φ 
is the cumulative distribution function of the standard normal distribution such that 
F normal(x; µ; σ2) = Φ(x−µ ). Hint: Recall that for x > 0 the probability density for σ 
the rectified normal random variable has the same shape (but not necessarily the same 
amplitude) as the probability density for the unrectified normal random variable. 
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(ii) (4 points) In Question 9 the half-length of the confidence interval — given by the ex­
pression (area_conf_int(2) - area_conf_int(1))/2 — will scale (for fixed n) as 
(a) c 1 

(b) c1 /2

(c) c0  (i.e., independent of c) 

(d) c −1/2

as c increases. (Of course area_conf_int will fluctuate; we are interested here in the 
average behavior.) For the purposes of this theoretical question we need not restrict the 
“instances” of c from above: we may consider any c greater than unity. Your answer 
should of course suggest the best value of c if we wish to obtain the most accurate 
estimate for the area. 

The template A2Q10_Template.m contains the multiple-choice format required by grade_o_matic_A2. 

CHALLENGE: Is the birthmonth data collected in lecture on 21 February “consistent” — within 
some reasonable statistical fluctuation — with the discrete uniform probability mass function: 
fX (xj ≡ (birthmonth) j) = 1/12, 1 ≤ j ≤ 12? The data is found in the Assignment_2_Materials 
folder in birthmonth.mat as array birthmonth_frequency in which birthmonth_frequency(j) = 
number of members of the sample with birthday in month j (with the usual convention of January 
as month 1 and December as month 12). You might consider the statistic 

1121 1
   )2 Y = ( ( − )1/2birthmonth_frequency_hypothesis(j) , (4)

12 12 
j=1 

in which birthmonth_frequency_hypothesis(j) is equal to the number of members with birth­
day in month j in a sample of size sum(birthmonth_frequency) drawn from the uniform mass 
function fX . In particular, you can create, by Monte Carlo methods, the (approximate) proba­
bility mass function for Y — note each experiment to generate a realization of the 1 × 12 array 
birthmonth_frequency_hypothesis is derived from a sample of sum(birthmonth_frequency) 
i.i.d. random variates from fX — and then assess whether the deviation from uniformity actually 
observed in our 2.086 sample is a reasonable statistical fluctuation (or not). 
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