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1 Preamble 

Least squares may be viewed as a best-fit procedure or as a statistical estimation procedure. There 
is much overlap between the two perspectives but the emphasis can be different: approximation 
in the best-fit context, and inference in the statistical estimation context. In this nutshell we 
summarize the intepretation of least-squares estimators from a statistical perspective. Note that 
we do not rederive the least-squares results for example as a maximum-likelihood estimator; rather, 
we take the estimators as given, and overlay the statistical interpretation. 

In this nutshell: 

We provide an a priori analysis for the error in the least-squares parameter estimates as a 
function of the variance of the measurement noise and the regression design matrix, X. We 
identify the important role of independence in convergence of the parameter estimates as we 
increase the number of experiments, m. 

We provide an individual two-sided confidence interval for any least-squares parameter es­
timate under the assumptions of zero model error and zero-mean normal, homoscedastic, 
independent measurement noise. The confidence interval can also be applied, with less rigor, 
to non-normal and heteroscedastic noise. 

We translate our confidence interval into a simple hypothesis test on any parameter in our 
model. We introduce the concept of Type I error and we derive the probability of Type I 
error for the test proposed. 

We refer to standard references for proofs of the results presented. 

Prerequisite: operations on matrices and vectors; least squares minimization; probability (mean, 
variance, independence, normal distribution) and statistical estimation (sample mean, confidence 
intervals). 

2 Recapitulation of Model, Measurements, and Estimators 

We are given a system described by independent variable — p–vector — x and dependent variable e
truth(x). model(x; β) n−1 y related through y We provide a model of the form y = βj hj (x) for j=0 

prescribed hj (x), 0 ≤ j ≤ n − 1 (with h0(x) = 1, by convention). We shall continue to assume that 
our model is adequate — there is no model error — in the sense that there exists a value for the 

true(x) = yparameter, βtrue, such that y model(x; βtrue). Finally, we are provided with measurements 
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meas meas(xi, y ), 1 ≤ i ≤ m, where y = ytrue(xi)+ Ei, and Ei is the measurement error, or “noise.” We i i 
shall assume here that the noise is zero-mean normal, homoscedastic with unknown variance σ2 , 
and independent: for i = 1, . . . , m, E(Ei) = 0, E(E2) = σ2, and E(EiEk) = 0, k = i.i 

Our least squares procedure shall then generate, for a particular realization of our experiment, 
β for βtruean estimate ˆ . We recall that β̂ satisfies the normal equations, 

meas(XTX)β̂ = XT y , (1) 

where X is the design matrix given by Xij = hj (xi), 1 ≤ i ≤ m, 0 ≤ j ≤ n − 1. (Recall that the 
columns of X are indexed from 0.) We presume that the columns of X are independent such that 
(1) admits a unique solution, which we may thus write explicitly as 

ˆ measβ = (XTX)−1XT y . (2) 

model(x; ˆOnce armed with β̂ we may also construct our estimate ŷ(x) = y β) for ytrue(x). We recall 
that, for 1 ≤ i ≤ m, 

(Xβtrue)i 
true(xi)= y and (Xβ̂)i = ŷ(xi) , (3) 

where (Xβtrue)i (respectively, (Xβ̂)i) refers to the ith entry of the m-vector Xβtrue (respectively, 
m-vector Xβ̂). 

In this nutshell we will understand the error in our estimator βˆ: we present in Section 3 a priori 
error bounds; we provide in Section 4 (a posteriori) confidence intervals. Although for the most part 
we retain our hypotheses — on the model and the measurement noise — in force, we shall also 
consider the extent to which the accuracy of our estimators, and our assessment of these estimators, 
degrades as our hypotheses are violated. In Section 3 we shall briefly discuss, in the context of a priori 
error analysis, the effect of model error, and also the effect of dependence (or correlation) in the 
measurement errors. In Section 4 we shall briefly discuss, in the context of confidence intervals, the 
effects of non-normality and heteroscedasticity — non-uniform variance for those with single-jointed 
tongues — of the measurement errors. We shall see that, in fact, some departure from ideal 
conditions can be readily accommodated, in particular in the case of a “well-designed” experiment. 

3 A Priori Analysis 

We provide here an analysis of the expected error. In the next section we translate these results 
into confidence intervals. 

We first define the error in our parameter estimate, e: e is an n–vector with components 
βj − βtrue = βtrueej ≡ ˆ j , 0 ≤ j ≤ n − 1; we may thus write β̂j j + ej , 0 ≤ j ≤ n − 1, or in vector form, 

ˆ = βtrueβ + e . (4) 

We also recall the error in our experimental measurements, E: E is an m–vector with components 
meas measEi ≡ y − ytrue(xi), 1 ≤ i ≤ m; we may thus write y = ytrue(xi) + Ei, 1 ≤ i ≤ m, or in vector i i 

form, from (3), 

meas = Xβtrue y + E . (5) 
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We can now insert (4) and (5) into (1) to obtain 

(XTX)(βtrue + e) = XT(Xβtrue + E) , (6) 

which directly simplifies to 

(XTX)e = XTE . (7) 

This “error equation” connects the errors in the measurements to the errors in the parameter 
estimate through the “intermediary” of the design matrix, X. 

We first present a general bound for ded, the norm of e — the sum of the square of the error 
in each of our n parameters – in terms of dEd, the norm of E — the sum of the square of the 
error in each of our m measurements. In particular, it is not difficult to demonstrate that, for any 
realization of our experiment, 

1ded ≤ dEd , (8)
νmin 

where νmin is the minimum singular value of the matrix X. (This minimum singular value may 
also be expressed as the square root of the smallest eigenvalue of (XTX).) This estimate is often 
quite pessimistic, as we shall see below. However, it demonstrates the connection between E and 
e through X (and νmin). The matrix X is determined by our model hj , 0 ≤ j ≤ n − 1, and the 
measurement points xi, 1 ≤ i ≤ m. As we discussed earlier, we typically choose the (linearly 
independent) hj , 1 ≤ j ≤ n − 1, to approximate well the anticipated system behavior and to isolate 
the parameters we wish to estimate, and the measurement points xi, 1 ≤ i ≤ m, to de-sensitize our 
parameter estimates to the measurement errors. We can now express the latter more quantitatively: 
we wish to maximize, through the design of the experiment, the singular value νmin (or other, 
related, stability factors). We note also that it is precisely ν−1 that bounds the amplification of min 
model errors in our parameter estimate: a good design can at least partially mitigate the effect of 
an inadequate model. 

To develop a sharper and more enlightening a priori bound we must consider expectations 
rather than individual realizations. We shall first consider the illustrative and analytically simple 
case of a single parameter: n = 1. In this case we know that XTX = m, and hence (7) reduces to 

1
 m
e = Ei . (9) 

m 
i=1 

We note immediately that if the sum of the m measurement errors, Ei, 1 ≤ i ≤ m, vanishes, then 
the error in our parameter estimate, e, will also be zero. This provides an important clue: error 
cancellation plays a crucial role in the accuracy of our parameter estimates. In fact, there is little 
reason that the sum of the measurement errors in any realization should be (exactly) zero. But 
there is good reason that the sum of the measurement errors in any realization should be “small.” 

To demonstrate this point, we first directly square both sides of (9) — recall that, for n = 1, e = 

βˆ0 − βtrue0is a scalar — to obtain 

12 
  m m

e = 
2m

i=1 i =1 
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We now recall that Ei, 1 ≤ i ≤ m, is a random variable of zero mean and variance σ2 . Thus β̂0 and 
e are also random variables: our parameter estimate and the error in our parameter estimate will 
both vary from realization to realization. We next take expectations (and a square root) to obtain

1 
E(e2) = 

    

m m 

 
E(EiEi ) . (11) 

m
i=1 i =1 

β0 for βtrueNote that E(e2) is the expected error in our estimate ˆ : the “root-mean-square” error 0 
over many realizations of our set of m measurements. 

We note from (7) (and in our particular case, (9)) that, since E(E) = 0 — by which we mean that 
E(Ei) = 0, 1 ≤ i ≤ m — then E(e) = 0 — by which we mean that E(ej ) = 0, 0 ≤ j ≤ n − 1. It thus 

E(βˆ−βtrue) βtruefollows from the definition of e that E(e) = = 0, or E(βˆ) = : βˆ is an unbiased 
βtrueestimator for βtrue . (Note that in the presence of model error, or model bias, E(β̂) = : our 

= β̂−E(β̂) and hence
 β̂−βtrueparameter estimator is now biased.) We may thus conclude that e =
 
that E(e2) is nothing more than the variance of our estimator. A small variance will of course
 
signal a good estimator: an estimator for which large deviations from the mean — the parameter
 
we wish to estimate, βtrue — will be unlikely.
 

We now recall that the measurement errors are independent (in fact, uncorrelated suffices): 
for 1 ≤ i ≤ m, E(EiEk) = 0, k = i; note also, from the assumption of homoscedasticity, that 
E(Ei 

2) = σ2 , 1 ≤ i ≤ n. It follows that only m terms in the double sum of (11) are nonzero. More 
precisely, we obtain

 

1
 
    


 
 n √1 1
 
E(e
2) = E(E2 

i mσ2 =
) =
 √
 σ. (12)
 
m m m 

i=1 

We observe that indeed, as m increases, the accuracy of our parameter estimate improves: cancel­
lation of the measurement errors “helps” the parameter estimate find the middle of the data. Not 
unexpectedly, the convergence rate is the familiar p = 1/2 associated with statistical estimation. 

It is simple to extend (12) to the case of general n: we obtain, for the expectation of ej ≡ 
β̂j − βtrue 

j , the error in the jth parameter,  
E(ej )2 = (XTX)−1 σ , 0 ≤ j ≤ n − 1 , (13)jj 

where (XTX)−1 refers to the jth diagonal element of the inverse of the matrix XTX associated jj 
with our normal equations. We again see the role, albeit less transparently, that the matrix X plays 
in the accuracy of our estimates: the jj entry of (XTX)−1 relates the noise in the measurements 
to the error in the estimate β̂j for the parameter βj 

true . It is possible to show, under certain general 
and plausible hypotheses, that  


(XTX)−1 ∼ m −1/2 as m → ∞ , (14)jj 

just as we obtained by explicit calculation for the case of n = 1. In conclusion: our parameter 
−1/2estimate converge to true result (in expectation) as m . 

To better understand this result — and the importance of independence — we momentarily 
abandon our assumption that the errors Ei, 1 ≤ i ≤ m, are independent. Rather, we consider the 
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opposite extreme: we assume perfectly correlated measurements such that E(EiEi ) = σ2 , 1 ≤ i, i' ≤ 
m. Now all m2 terms in the double sum of (11) survive, and we arrive at 

E(e2) = σ . (15) 

In this case our error does not get smaller — out parameter estimate does not improve — as we 
take more measurements. This makes good sense: if all the measurements are correlated, then the m 
measurements are in fact equivalent to a single measurement; thus (15) should agree, and indeed 
does agree, with (12) for m = 1. A first conclusion is that independence is key to convergence. The 
second conclusion — clear from the derivation — is that some small correlation between 
measurement errors is not necessarily a disaster: our sum in (11) may still decrease with m, albeit 
with a larger constant or perhaps an (even) slower rate. 

4 Confidence Intervals 

4.1 Large Samples 

We consider here confidence intervals which will be valid in the limit of many measurements, 
m → ∞. In actual practice, infinity can be quite small in practice; in any event, we provide the 
necessary finite-sample corrections in the next section. 

βtrueWe know that, for 0 ≤ j ≤ n − 1, βj is a random variable with mean and variance j 

(XTX)−1 
jj σ. It further follows from (2) that βˆ is the sum of normal random variables, and hence βˆ 

is also normally distributed. Thus ⎞⎛ 

P
⎜⎝

β̂j − βtrue 

j−zγ ≤ ≤ zγ 
⎟⎠
= γ , (16)
 

(XTX)−1σjj 

where Φ(zγ ) = ((1 + γ)/2) and Φ is the standard normal cumulative distribution function. We note 
that (19) is a probability statement for a particular j and not a statement valid jointly for all j, 0 ≤ j 
≤ n − 1. 

It remains to estimate the variance σ2 . Given that σ2 = E(E2 
i ), 1 ≤ i ≤ m, it is plausible to 

estimate σ2 as the sample mean of the noise random variable squared, or 

m m 
1 1 meas − (Xβtrue)i)

2E2 = (y ; (17)i i m m 
i=1 i=1 

measthe second expression follows from the definition Ei ≡ y − ytrue(xi) and the identity (Xβtrue)i = i 
ytrue(xi). We exploit here, in a crucial way, (homoscedasticity and) independence of the measure­

ment noise: we may enlist the m different measurements in a single estimate of σ2. However, (17) 
β → βtrueis still not calculable, and thus we approximate βtrue by β̂ — recall that ˆ in our limit of 

large m — to arrive at an approximation σ̂2 to σ, 

m 
meas meas − X ˆσ̂2 ≡ 

1
(y − (Xβ̂)i)

2 =
1 dy βd2 , (18)i m m 

i=1 
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where the second expression follows from the definition of the norm. The quantity σ̂2 is denoted 
the (biased) sample variance. Note that our approximation σ ≈ σ̂ is only valid for large m and in 
particular for m » n such that the dependence between β̂ and σ is sufficiently weak. (For example, 
if we consider m = n, equivalent to interpolation, σ̂2 evaluates to zero — clearly not at all related to 
σ2, the true variance of the measurement noise.) We also emphasize that σ2 is an estimator for the 
variance of the measurement error, which through (XTX)−1 is then translated into an estimator jj 

for the variance in βj . Finally, we caution that in the presence of non-zero model error, σ̂2 will not 
converge to σ2 as m increases but rather will indiscriminately lump measurement noise and model 
error. 

It remains to assemble our results. We first substitute our approximation σˆ for σ in (19) to 
obtain ⎞⎛ 

P
⎜⎝

β̂j − βtrue 

j−zγ ≤ ≤ zγ 
⎟⎠
∼ γ , m → ∞ .
 (19)
 

(XTX)−1σ̂jj 

We then pivot the resulting probability statement to arrive at two inequalities for βj 
true from which 

we can then form a confidence interval. The final result: for zero-mean normal, homoscedastic, 
independent noise, in the limit of sufficiently large m, for a given j, 0 ≤ j ≤ n − 1, the true 
parameter βj 

true resides in the confidence interval 

]large sample ≡ [ ˆ[ciβtrue βj − zγ (XTX)−1 σ , ˆ (XTX)−1 σ̂ ] (20)ˆ βj + zγjj jj j 

with confidence level γ. We shall refer to (20) as the large-sample individual (two-sided) confidence 
interval for βj 

true: the adjective “individual” signals that (20) is not valid for all j, 0 ≤ j ≤ n − 1, 
simultaneously, but rather for any given single j, 0 ≤ j ≤ n − 1. Note for n small we can directly 
form the n × n matrix XTX, next find the inverse, (XTX)−1, and finally inspect the jj entry; for 
larger n, it is possible and preferrable to entirely avoid the formation of XTX and (XTX)−1 . 

In fact, our result (20) is also valid even for non-normal and heteroscedastic noise (with some 
limitations on the variance), thanks to certain versions of the central limit theorem which admit 
more generous hypotheses. The practical implications are perhaps more qualitative than quantita­
tive: in general, we will not know for what values of m our large-sample confidence interval (20) will 
be accurate to (say) 10%; however, we do know that the (20), as well as the more precise result of the 
next section, is stable with respect to deviations from normality or homoscedasticity— some small 
non-normality or heteroscedasticity should have a commensurate small effect on our confidence 
intervals (or confidence level). 

4.2 Finite Samples 

We now present a more precise confidence interval valid for any m > n. We require only two 
changes. 

First, we must replace σˆ2 in (20) with s2 given by 

m 
2 1 meas − (Xβ̂)d2 s = dy ; (21) 

m − n 
i=1 
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s2 is denoted the (unbiased) sample variance. We again emphasize that s2 is an estimator for the 
variance of the measurement error, which through (XTX)−1 is then translated into an estimator jj 

2 2for the variance of βj . Clearly, for m » n, s approaches σ̂2 . However, for m close to n, s and 
2σ̂2 are very different: the m − n in the denominator of s reflects the dependence between our 

estimators for βtrue and σ2 . We observe in particular that for m = n we simply can not develop 
an estimate for s2 — and hence we will not be able to develop a corresponding confidence interval 
— since for m = n we interpolate the data and thus we can not possibly distinguish model from 
noise. 

Second, we must replace zγ in (20) with tγ,m−n, where tγ,m−n is the solution of Tm−n(tγ,m−n) = 
((1 + γ)/2) for Tk the cumulative distribution function associated with the “Student t” density 
with k “degrees of freedom.” More explicitly, we may write tγ,m−n = T −1 ((1 + γ)/2), where T −1 

m−n k 
is the inverse cumulative distribution function of the Student t density with k degrees of freedom. 
We must consider Tk rather than Φ to reflect the additional uncertainty introduced by the variance 
approximation s2 ≈ σ2; note that tγ,m−n > zγ but that tγ,m−n tends to zγ as m → ∞ (for fixed n). 

We can now state the result: for zero-mean normal, homoscedastic, independent noise, for any 
m > n, for a given j, 0 ≤ j ≤ n − 1, the true parameter βj 

true resides in the confidence interval 

] ≡ [ ˆ (XTX)−1 ˆ (XTX)−1[ciβtrue βj − tγ,m−m s , βj + tγ,m−n jj s ] (22)jj j 

with confidence level γ. We shall refer to (22) as the individual (two-sided) confidence interval for 
βtrue . We note that our confidence interval depends of course on our data but also on the confidence j 
level, γ, the model and the measurement points, through the design matrix X, and m and n through 
s. The frequentist interpretation of (22) is standard: βtrue 

j will reside in [ciβtrue ] in a fraction γ of 
j 

many replications of our experiment (note each experiment comprises m measurements). 
There are many other confidence intervals possible: one-sided confidence intervals for the 

βtrue βtrue 
j , 0 ≤ j ≤ n − 1; joint confidence intervals simultaneously on , 0 ≤ j ≤ n − 1; alsoj 

true(x0) = yconfidence intervals on y model(x0; βtrue) for some value x0 of the independent variable. 

4.3 Hypothesis Testing 

We consider here a simple introduction to Hypothesis Testing. We do not introduce much of the 
special language — very useful but also subtle — or mathematical technology associated with 
the general framework; instead, we directly build on the confidence intervals already developed to 
consider a relatively simple specific situation. 

Let us say that we wish to decide if a particular parameter, βtrue, takes on a particular value, j∗ 

∗ ∗ say c . We may write this hypothesis as H : βtrue = c . We shall presume that it is our belief, j∗ 

∗based on some theoretical evidence, that indeed βtrue = c . We thus wish to test, or challenge, 
this hypothesis with respect to data: Does the data suggest that the hypothesis might be false? 
If yes, we reject our hypothesis; if no, we accept our hypothesis. In the former case, data forces 
us to abandon a theory. (Purists prefer “not reject” rather than “accept”: a theory can never be 
definitively verified, only definitively falsified.) 

We must thus develop a test — a criterion — on the basis of which we will reject the hypothesis 
as inconsistent with observations. Clearly, given our a priori belief in the hypothesis, we might wish 
to be conservative: we want to reject a true hypothesis with low probability. Note the rejection of 
a true hypothesis is known as a Type I error. More quantitatively, our test should thus satisfy the 

j∗ 
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following condition: the probability that we reject a true hypothesis — that we commit a Type I 
error — shall be equal to 1 − γ, for γ close to unity and hence 1 − γ suitably close to zero. In effect, 
we assume the hypothesis is innocent (true) until proven guilty (false) beyond reasonable doubt 
(1 − γ). 

Our test is very simple: 

if the confidence interval [ciβtrue ] includes c ∗, then we accept our hypothesis; 
j∗ 

if the confidence interval [ciβtrue ] does not include c ∗, then we reject our hypothesis. 
j∗ 

We now show that we satisfy our Type I error condition. We suppose that our hypothesis is 
∗indeed true, and hence βtrue = c . (Note this is not a probabilistic statement: the hypothesis j∗ 

is either true or false; our analysis considers the case in which the hypothesis is true.) Then by 
∗construction [ciβtrue ] will contain c with probability, or confidence level, γ. Hence, [ciβtrue ] will 

j∗ j∗ 
∗not contain c — and we will reject our hypothesis H — with probability, or confidence level, 

1 − γ. (We recall that probability refers to random variables and confidence level to corresponding 
realizations.) Thus, we reject our true hypothesis with probability, or confidence level, 1 − γ: in a 
fraction 1 − γ of experiments we perform (each of which constitutes m measurements), we reject 
the (true) hypothesis because we misinterpret an unlikely fluctuation as the statistically significant 

∗effect βtrue = c .j∗ 

Of course we could ensure no Type I errors if we simply accept our hypothesis independent of 
any data: we would then never reject a true hypothesis. But then also we could clearly accept a 

βtrue ∗false hypothesis, and even a very false hypothesis — j∗ very different from c . The acceptance 
of a false hypothesis is known as a Type II error. Often, tests of hypotheses are constructed such 
that for a given tolerable probability of Type I error – we do not wish to reject a presumed true 
hypothesis unless the data rather unambiguously contradicts our assertion — we minimize the 

∗ ∗ ∗probability of Type II error — acceptance of false hypotheses βtrue = c for some set of c = c .j∗ 

Perspectives 

In this nutshell we only touch the surface of the rich topic of regression analysis, hypothesis testing, 
and statistical inference. For a more in-depth analysis of the basic mathematical assumptions and 
a complete derivation of the theoretical results we recommend AM Mood, FA Graybill, and DC 
Boes, “Introduction to the Theory of Statistics,” McGraw-Hill, 1974. For a much more complete 
description of the many kinds of confidence intervals available, the interpretation of residuals and 
the identification of bias, and the development of more advanced regression methods and associated 
inferences techniques, we refer to NR Draper and H Smith, “Applied Regression Analysis,” 3rd 

Edition, Wiley, 1998. 
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