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1 Preamble 

It is often the case in engineering analysis that the outcome of a (random) experiment is a 
numerical value: a displacement or a velocity; a Young’s modulus or thermal conductivity; 
or perhaps the yield of a manufacturing process. In such cases we denote our experiment a 
random variable. In this nutshell we develop the theory of random variables from definition 
and characterization to simulation and finally estimation. 

In this nutshell: 

We describe univariate and bivariate discrete random variables: probability mass func­
tions (joint, marginal, conditional); independence; transformations of random vari­
ables. 

We describe continuous random variables: probably density function; cumulative dis­
tribution function; quantiles. 

We define expectation generally, and the mean, variance, and standard deviation in 
particular. We provide a frequentist interpretation of mean. We connect mean, vari­
ance, and probability through Chebyshev’s Inequality and (briefly) the Central Limit 
Theorem. 

We summarize the properties and relevance of several ubiquitous probability mass 
and density functions: univariate and bivariate discrete uniform; Bernoulli; binomial; 
univariate and bivariate continuous uniform; univariate normal. 

We introduce pseudo-random variates: generation; transformation; application to hy­
pothesis testing and Monte Carlo simulation. 

We define a random sample of “i.i.d.” random variables and the associated sample 
mean. We derive the properties of the sample mean, in particular the mean and 
variance, relevant to parameter estimation. 

We present a procedure for estimation of the Bernoulli parameter: sample-mean esti­
mate; confidence level and confidence interval; convergence with sample size; consider­
ations for rare events. 

1We thank Ms Debra Blanchard for the preparation of the figures. 

1
 

© The Authors. License: Creative Commons Attribution-Noncommercial-Share Alike 3.0 (CC BY-NC-SA 3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors
and MIT OpenCourseWare source are credited; the use is non-commercial; and the CC BY-NC-SA license is
retained. See also http://ocw.mit.edu/terms/.

http://ocw.mit.edu/terms/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/


Several related concepts, including estimation of parameters for a normal population, are 
reserved for a subsequent nutshell on regression. 

Prerequisites: In a Nutshell. . . Introduction to Probability and Statistics; univariate and mul­
tivariate calculus; elementary combinatorics. 

2 Discrete Random Variables 

2.1 Probability Mass Function 

2.1.1 Univariate Case 

We shall denote our random variable by X. A random variable is a particular kind of 
random experiment for which the outcomes are numerical values. We can not predict for 
any particular experiment the outcome, however we can describe the frequency of outcomes 
in the limit of many experiments: outcome probabilities. 

The sample space — the set of all possible outcomes of an experiment — is given by 
o o o o{x1, x2, . . . , xL}: each experiment yields x£ for some f, 1 ≤ f ≤ L. Note that the outcomes 

are numerical values. We denote the corresponding outcome probabilities as p£ = P (x£
o), 1 ≤ 

f ≤ L. The outcome probabilities must satisfy 0 ≤ p£ ≤ 1, 1 ≤ f ≤ L, and 

LL 
p£ = 1 . (1) 

£=1 

We recall the frequentist interpretation of the outcome probabilities: we perform an infinite 
number of experiments; we calculate, for f = 1, . . . , L, the cumulative frequency function 

o oϕck(x£), the fraction of the first k experiments for which the experiment yields outcome x£ ; 
owe identify, for f = 1, . . . , L, p£ as the limit of ϕck(x£) as k → ∞. 

We can summarize the relationship between outcomes and outcome probabilities in a 
probability mass function, fX : 

fX (x£
o) = p£, 1 ≤ f ≤ L . (2) 

The input is an outcome (in our sample space) — a numerical value — and the output is the 
ocorresponding probability. Note that fX is defined only for the L arguments x£ , 1 ≤ f ≤ L. 

oIt follows from our conditions on the p£, 1 ≤ f ≤ L, that 0 ≤ fX (x£) ≤ 1, 1 ≤ f ≤ L, and 
furthermore 

LL 
fX (x£

o) = 1 . (3) 
£=1 

We may think of a probability mass function as a distribution of a total mass of unity 
oamongst L point particles at locations x£ , 1 ≤ f ≤ L. 
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The subscript X of the probability mass function indicates the random variable to which 
the probability mass function is associated: we say that X is distributed according to fX . 
As always, we must distinguish between our random variable X — a procedure — and a 
realization — application of the procedure to a particular instance to yield an outcome in 
our sample space, {x
oi , 1 ≤ i ≤ L}. The outcome of a realization, x, also often referred to as 
simply the realization, is denoted a random variate; note x is a real number. We describe a 
realization as X → x. 

As an example of a probability mass function we consider the (discrete) uniform proba­
bility mass function, 

f 1unif;L 1 ≤ f ≤ L
f
 ( ) =
 : (4)
,
X L
 L
 

we distribute our mass (probability) uniformly — p£ = 1/L, 1 ≤ f ≤ L — over L uniformly 
placed point masses (outcomes),
 x
o£ =
 f/L, 1 ≤ f ≤ L.
 Note that indeed all outcome
 
probabilities are non-negative and less than unity (L is a positive integer), and furthermore 
the sum of the outcome probabilities is L(1/L) = 1, as required. The superscript to f 
indicates the particular probability mass function of interest and the parameter value L. 

There are many phenomena which might be plausibly approximated (from mechanistic 
considerations) by the uniform density. We provide a classical example: the rolling of a 
single die. The experiment is represented by a random variable X which records the number 
of dots on the face which lands “up”; the sample space of all possible outcomes is thus given 
by {x
o£ 

X

= f, 1 ≤ f ≤ 6}; we posit, from symmetry arguments, that X is distributed according 
to a uniform probability mass function, X ∼ funif;6 .
 

As a second example of a probability mass function, we consider the Bernoulli probability 
mass function,  

o 
11 − θ
 if x = x
 ≡ 0
 (= p1)f
Bernoulli;θ 

X (x) =
 , (5)
o 
2 ≡ 1
θ if x = x
 (= p2) 

where θ is a real number, 0 ≤ θ ≤ 1: we distribute our mass (probability) — p1 = 1 − 
θ, p2 = θ — over L = 2 point masses (outcomes) placed at xo 

1 ≡ 0, x
o 
2 ≡ 1, respectively.
 

Note that indeed all outcome probabilities are non-negative, thanks to our assumptions on 
θ, and furthermore the sum of the outcome probabilities is 1 − θ + θ = 1, as required. 
The superscript to f indicates the particular probability mass function of interest and the 
parameter value θ. 

The Bernoulli probability mass function may appear rather simplistic but in fact it admits 
an interpretation with wide applicability: we may interpret the two outcomes, x
o 

1 = 0 and
 
o =
 1, as “indicator” functions, in which 0 encodes False (or Off) and 1 encodes True (or
 

On). The choice for sample space {0, 1} — rather than any other two values — creates 
a built-in number function, or frequency function, which is very convenient in practice. 
We provide a classical example: the flipping of a coin. The experiment is represented by 
a random variable X which records the face which lands “up”; the sample space of all 
possible outcomes is given by {x
o 

1 ≡ 0 Tail, x
o 
2 

3 

≡ 1 Head}; we posit that X is distributed as
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Bernoulli;1/2
fX — equal likelihood of a Tail or a Head. We choose θ = 1/2 for a fair coin; if the 
coin is not fair — somehow modified to bias the outcome — then θ will differ from 1/2. 

In principle, there are infinitely many different probability mass functions. In practice, 
there are a few families of parametrized probability mass functions which typically suffice 
to “model” most random phenomena — most experiments — of interest; we have presented 
here two of the more common, uniform (parametrized by the number of outcomes, L), and 
Bernoulli (parametrized by the probability of a 1, θ). The parameters associated with a 
probability mass function are determined either by empirical, mechanistic, or subjective 
approaches. Most commonly, we combine the empirical and mechanistic technology: mecha­
nistic serves to identify the most appropriate family; empirical serves to identify, or estimate, 
the parameter — informed by the connection between cumulative frequency function and 
probability. In some fortuitous situations, mechanistic considerations alone suffice to suggest 
both the appropriate family and the good parameter value. 

2.1.2 Bivariate Case 

We now consider a discrete random vector, (X, Y ), where X and Y are each random variables. 
The sample space — the set of all possible outcomes of an experiment — is now given 

by {(xi
o, yj

o), 1 ≤ i ≤ LX , 1 ≤ j ≤ LY }: an LX × LY grid of values in x and y. We denote 
the corresponding outcome probabilities as pi,j , 1 ≤ i ≤ LX , 1 ≤ j ≤ LY . We can assemble 
these results in a joint probability mass function 

fX,Y (xi
o , y j

o) = pi,j , 1 ≤ i ≤ LX , 1 ≤ j ≤ LY . (6) 

We say that (X, Y ) is (jointly) distributed according to fX,Y . We know that 0 ≤ fX,Y (xi
o, yo) ≤j 

1, 1 ≤ i ≤ LX , 1 ≤ j ≤ LY , and furthermore 

LX LYLL 
fX,Y (xi

o , y j
o) = 1 . (7) 

i=1 j=1 

We may think of our joint probability mass function as a distribution of a total mass of unity 
amongst LX LY point particles at locations (xo

i , yj
o), 1 ≤ i ≤ LX , 1 ≤ j ≤ LY . 

We can next define marginal probability mass functions as 

LYL 
o o ofX (xi ) = fX,Y (xi , y j ), 1 ≤ i ≤ LX , (8) 

j=1 

LXL 
o o ofY (yj ) = fX,Y (xi , y j ), 1 ≤ j ≤ LY . (9) 

i=1 

o o o oNote that fX (x ) is the probability of event {(xi , y ), 1 ≤ j ≤ LY }: x = x and y may take i j i 
o o o oon any value; similarly, fY (yj ) is the probability of event {(xi , yj ), 1 ≤ i ≤ LX }: y = y andj 

x may take on any value. 
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We may also define conditional probability mass functions for the random variables X | Y 
and Y | X as 

o ofX,Y (xi , yj )
fX | Y (x o | y o) = , 1 ≤ i ≤ LX , 1 ≤ j ≤ LY , and (10)i j ofY (y )j 

o o fX,Y (xi
o, yj

o)
fY | X (yj | xi ) = 

o , 1 ≤ i ≤ LX , 1 ≤ j ≤ LY ,	 (11)
fX (xi ) 

o o	 o orespectively. Note that fX | Y (xi | yj ) is the probability of the event x = xi given that y = yj ; 
fY | X (y

o | xo) admits a similar interpretation. j i 

Finally, we introduce the notion of independence of two random variables. We say that 
X and Y are independent if and only if 

o o o ofX,Y (xi , y j ) = fX (xi )fY (yj ), 1 ≤ i ≤ LX , 1 ≤ j ≤ LY . (12) 

Note that independence of random variables X and Y means that events x = xo
i and y = yj

o 

are independent for all i and j, 1 ≤ i ≤ LX , 1 ≤ j ≤ LY . It follows from (12) that 

o o ofX | Y (x	i | yj ) =fX (xi ) , (13) 
o o ofY | X (yj | xi ) =fY (yj ) ;	 (14) 

the distribution of X (respectively, Y ) is not affected by the value of Y (respectively, X). 
We provide here one example of joint probability mass function. We consider the draw of 

a single card from a shuffled deck. The draw experiment is described by a bivariate random 
variable (X, Y ), where X represents the suit and Y represents the denomination. Our sample 
space is thus {(xo ≡ i, yo ≡ j), 1 ≤ i ≤ LX , 1 ≤ j ≤ LY } for LX = 4 and LY = 13: we i j 

o o o oencode (say) clubs, diamonds, hearts, and spades as x = 1, x = 2, x = 3, and x = 4,1 2 3 4 

respectively, and the denomination as yj
o = j, 1 ≤ j ≤ 13. We can plausibly assume that 

the suit and denomination of a card drawn from a well shuffled deck are independent, and 
furthermore that any suit and any denomination are equally likely. We thus choose fX,Y as 
the (discrete) bivariate uniform probability mass function, 

funif;LX ,LY o o 1 
X,Y (xi , y j ) = , 1 ≤ i ≤ LX , 1 ≤ j ≤ LY . (15)

LX LY 

unif;LX ,LY unif;LX unif;LYWe note that f (x, y) = fX (x)f (y). (In this case we could either suppose X,Y	 Y 

independence to derive the bivariate probability mass function, or indeed suppose “equally 
likely” and then deduce independence.) 

2.1.3 Random Sample 

We shall consider a particular, but very important, case of an n-variate random variable, 
Xn = (X1, X2, . . . , Xn), for Xi, 1 ≤ i ≤ n, independent random variables identically dis­
tributed according to the (discrete univariate) probability mass function fX . It follows from 
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these two assumptions that
 

nn 
fXn (xn ≡ (x1, x2, . . . , xn)) = fX (xi) , (16) 

k=1 

where xi, 1 ≤ i ≤ n, may take on any value in the sample space associated with fX . As 
always, our random vector Xn represents a procedure, and xn shall represent an associated 
(outcome of a) realization. It is important to note that a single realization of Xn, Xn → xn, 
requires n realizations of the the random variable X, (X → xi)i=1,...,n. For example, for 
X distributed according to the Bernoulli probability mass function, a single realization xn 

represents n coin flips. 
The random variable Xn is denoted a random sample: the “random” summarizes the 

requirement that the Xi, 1 ≤ i ≤ n, are independent and identically distributed, typically 
abbreviated as “i.i.d.” in the statistical literature. Similarly, the random variate xn is denoted 
(the outcome of) a random sample realization. We say, when we create a random sample 
of (i.i.d.) random variables distributed according to fX , that we draw the sample from the 
fX probability mass function, or equivalently, from an fX “population.” For example, if X 
is a Bernoulli random variable, we would say that we draw our sample from a Bernoulli 
population. 

A random sample in some sense defines a random experiment: the (frequency) proba­
bility of outcomes in any given experiment Xi is not affected by the outcomes of the other 
experiments Xi' , i

'  i.= This is simple to state, but less simple to ensure or confirm, in 
particular in the case in which X represents a physical experiment (we discuss synthetic 
experiments below): are the experiments indeed independent? do the outcome probabilities 
(as limits of frequencies) adhere to the designated univariate probability mass function? In 
practice, we must do our best to verify these assumptions, and to reflect any “doubts” in 
subsequent inferences and decisions. 

2.1.4 Functions of Random Variables 

Univariate Case. We can also consider functions of random variables. We consider first 
the univariate case: V = g(X), for X distributed according to prescribed probability mass 
function fX , and g a given univariate function. Note that, since X is a random variable, so 
too is V . 

We assume for the moment that the function g is invertible, in which case the g(xo), 1 ≤£ 

f ≤ L, are distinct. It then follows that the probability mass function for V is given by 

fV (v£
o) = fX (g −1(v£

o)), 1 ≤ f ≤ L , (17) 

o o o o o owhere {v ≡ g(x ), v ≡ g(x ), . . . , v = g(x )} is the sample space associated with V .1 1 2 2 L L

The derivation is simple: the event v = vo ≡ g(xo) happens if and only if the event x = £ £
 
o o o
g−1(v ) = x happens; hence the probability of event v = g(v ) is equal to the probability £ £ £
 

o o o o
of event x = x ; but the probability of event x = x is fX (x ) = fX (g
−1(v )). In some sense £ £ £ £ 

our mapping is simply a “renaming” of events: g(xo) inherits the probability of xo 
£ £ . 

6
 



The case in which g is not invertible is a bit more complicated. Groups of many outcomes 
in the sample space for X will map to corresponding single outcomes in the sample space for 
V ; the corresponding outcome probabilities for X will sum to single outcome probabilities 
for V . We consider several examples below. 

CYAWTP 1. We consider the experiment in which we roll two dice simultaneously. The 
random variable D1 represents the number of dots on the face which lands “up” of the first 
die; the random variable D2 represents the number of dots on the face which lands “up” on 
the second die. You may assume that D1 and D2 are independent and each described by 
the discrete uniform probability density for L = 6. Now introduce a new random variable 
V which is the sum of D1 and D2. Find the probability mass function for V . Next define 
a Bernoulli random variable W as a function of V : W = 0 if V < 7 and W = 1 if V ≥ 7. 
Find the Bernoulli parameter θ for W . 

The Sample Mean. We may also consider functions of bivariate and n-variate random vari­
ables. We consider here a special but important case. 

Our point of departure is our random sample, in particular the n-variate random variable 
Xn ≡ (X1, X2, . . . , Xn) for Xi, 1 ≤ i ≤ n, i.i.d. random variables drawn from a prescribed 
probability mass function fX . We may then define the sum of our random variables, Zn, as 
a function (from n variables to a single variable) of Xn, 

nL 
Zn = Xi ; (18) 

i=1 

¯similarly, we may define the sample mean, Xn, as a function (from n variables to a single 
variable) of Xn, 

L1 
n

X̄n = Xi . (19) 
n 

i=1 

¯Note that Xn is a random variable which is the average of the elements in our n-variate 
¯random variable — our random sample — Xn = (X1, X2, . . . , Xn): Xn = Zn/n. It is 

important to note that a single realization of the sample sum or sample mean, Zn → zn or 
X̄n → x̄n, requires n realizations of the the random variable X, (X → xi)i=1,...,n. 

We shall develop later some general properties of the sample mean. However, in the 
remainder of this section, we shall consider the particular case in which the Xi, 1 ≤ i ≤ n, 
are drawn from a Bernoulli population with parameter θ. To provide a more intuitive 
description, we shall often equate the experiment Xi (for any i) with the flip of a coin, and 
equate outcome 0 to a Tail and outcome 1 to a Head. Our random sample Xn then represents 
n independent coin flips. Each outcome (xn)£

o , 1 ≤ f ≤ 2n, may be represented as a binary 
vector (x1, x2, . . . , xn), xi = 0 (Tail) or 1 (Head), 1 ≤ i ≤ n; for example, outcome (xn)1 

o 

(say) = (1, 0, . . . , 0) corresponds to a Head on the first flip and Tails on all the remaining 
flips. 
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Armed with this description, we may now construct the probability mass function for 
Xn. In particular, fXn is given by 

fXn (xn) = (1 − θ)n−kθk for k ≡ H(xn), xn = (xn)
o
£ , 1 ≤ f ≤ 2n , (20) 

where H(xn) is the number of 1’s (Heads) in an outcome xn. The first factor in (20) accounts 
for the n − k Tails (each of which occur with probability 1 − θ) in outcome xn; the second 
factor accounts for the k Heads (each of which occur with probability θ) in outcome xn; the 
probabilities mutliply because the Xi, 1 ≤ i ≤ n, are independent. 

We next note that, in this Bernoulli case, 

nL 
Zn = Xi (21) 

i=1 

is simply H(Xn), the number of Heads in our random sample of n coin flips: the Tails 
contribute 0 to the sum, and each Head contributes 1 to the sum. Hence, upon division by 

¯ ¯n, Xn is the fraction of coin flips in our random sample which are Heads. (Recall that Xn 

is a random variable: the number of Heads will be different for each sample realization of n 
¯coin flips.) We could plausibly expect from our frequentist arguments that for large n, Xn 

will approach θ, the probability of a Head in each flip of the coin. This is indeed the case, 
and this simple observation will form the basis of our estimation procedures. 

We can now readily derive the probability mass function for Zn. We first note that the 
sample space for Zn is {k, k = 0, . . . , n}, since the the number of Heads in our n coin flips, 
k, may range from k = 0 — all Tails — to k = n — all Heads. To obtain the probability 
that Zn takes on the particular value (outcome) k, we must now sum (20) over all outcomes 
xn — perforce mutually exclusive — which correspond to k Heads. We thus arrive at 

(k) = fbinomial;θ,n fZn Zn 
(k) , (22) 

where 

n 
fbinomial;θ,n 
Zn 

(k) = (1 − θ)n−kθk . (23)
k 

We deconstruct this formula: there are “n choose k” — n!/(n − k)!k! — outcomes for which 
k Heads occur (equivalently, “n choose k” distinguishable ways to arrange n − k 0’s and 
k 1’s); the probability of each such outcome is given by (20). We note that (20) depends 
only on k, which is why our sum over all outcomes for which we obtain k Heads is simply 
a multiplication (of (20)) by the number of outcomes for which we obtain k Heads. The 
probability mass function (23) is known as the binomial probability mass function. 

Finally, we note that the sample space for the sample mean, X̄n, is {(x̄n)
o
k = k/n, 0 ≤ 

), is fbinomial;θ,n k ≤ n}. The probability mass function for the sample mean, f ̄ (x̄n (nx̄n):Xn Zn 
¯we simply identify the outcome x̄n = k/n for Xn with the outcome k for Zn. 
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2.1.5 Pseudo-Random Variates
 

We now ask, given some probability mass function fX , how might we create a random sample, 
Xn, and for what purposes might this sample serve? 

More classically, the random experiment X will be a “physical” experiment — the ad­
ministration of a survey, the inspection of a part, the measurement of a displacement — and 
Xn will then be a collection of n independent experiments. A sample realization (Xn → xn) 
yields a collection of n random variates of X, {x1, x2, . . . , xn}. We can then exploit this 
sample realization — data — to estimate parameters (for example, the Bernoulli θ) or prob­
abilities for purposes of prediction and inference. We elaborate on parameter estimation in 
a subsequent section. 

The advent of the digital computer has created a new approach to the construction 
of random sample realizations: “pseudo-random variates.” In particular, there are algo­
rithms which can create “apparently random” sequences of numbers uniformly distributed 
between (say) 0 and 1. (We shall discuss the continuous uniform probability density function 
shortly.) Methods also exist which can then further transform these pseudo-random numbers 
to pseudo-random variates associated to any selected probability mass function fX in order 
to generate pseudo-random sample realizations (x1, x2, . . . , xn). 

Sequences (or samples) or pseudo-random variates are in fact not random. The sequence is 
intiated and indeed completely determined by a seed.2 However, absent knowledge of this 
seed, the pseudo-random variates appear random with respect to various metrics.3 Note in 
particular that these pseudo-random variates do not simply reproduce the correct frequencies, 
but also replicate the necessary independence. (It follows that the first half, or second 
half, or “middle” half, of a pseudo-random sample realization is also a (smaller) pseudo-
random sample realization and will also thus approximately reproduce the requisite outcome 
frequencies.) These pseudo-random variates can serve in lieu of “truly” random variates 
generated by some physical process. We indicate here a few applications. 

A first application of pseudo-random variates: pedagogy. We can develop our intuition 
easily, rather than through many laborious physical coin flips or die rolls. For example, 
consider a sample realization xn drawn from a Bernoulli population with prescribed param­
eter θ. We may then readily visualize our frequentist claim that the cumulative frequency 
ϕcj (0) (the fraction of Tails in our sample realization) and ϕcj (1) (the fraction of Heads in our 
sample realization) approaches 1 − θ and θ, respectively, as j tends to infinity. (To replicate 
our frequentist experiments of Introduction to Probability and Statistics we would choose n 
very large, and then consider ϕcj (0), ϕcj (1), j = 1, . . . , n; not equivalently, but similarly, we 
can directly investigate ϕn(0) and ϕn(1) for increasing values of n. Note the former considers 
a nested sequence of subsets of a given sample, whereas the latter considers a sequence of 
difference and independent samples.) 

2In practice, the reproducibility is desirable in the development of code and in particular for debugging 
purposes: we can perform tests for the same data. Once debugging is complete, it is possible to regularly 
change the seed say based on the time of day. 

3In fact, for sufficiently long sequences of pseudo-random numbers, a pattern will indeed emerge, however 
typically the periodic cycle is extremely long and only of academic concern. 
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Numerical Experiment 2. Invoke the Bernoulli GUI for θ = 0.4. Visualize the convergence 
of ϕcj (0) to 1 − θ and ϕcj (1) to θ for j = 1, . . . , n. More quantitatively, evaluate (θ − ϕcn(1))/θ 
for n = 100, n = 400, and n = 1600. Now repeat these experiment for θ = 0.1. 

A second application of pseudo-random variates: methodology development. We can 
readily test and optimize algorithms, say for parameter estimation, with respect to synthetic 
data. Pseudo-random variates are of course no substitute for the actual data — random 
variates — associated with a particular physical experiment: the former will need to assume 
precisely what the latter are intended to reveal. However, the synthetic data can serve to 
develop effective techniques in anticipation of real data. 

A third application of pseudo-random variates: hypothesis testing. We can often take 
advantage of pseudo-random variates to generate assumed distributions — a null hypothesis 
— with respect to which we can then “place” our data to determine statistical significance. 
We provide a simple example of ths approach, which is very simply implemented and thus a 
natural first step in the consideration of a hypothesis. (However, it is admittedly a somewhat 
lazy, analysis-free approach, and inasmuch not enthusiastically endorsed by mathematical 
statisticians.) 

Consider the distribution of birthdays through the year. We assume, our null hypothesis, 
that we may model birthmonth, X, by fX 

unif;L=12 (ignoring small differences in the number 
of days in different months). If this hypothesis is true, then we expect that, for any random 
sample realization xn, the goodness-of-fit measure 

L1 
12

1
)2)1/2d(xn) = ( (ϕn(i) − (24)

12 12
i=1 

shall be rather small; here ϕn(i) is the frequency of outcome (month) i. But how can 
we distinguish whether a deviation of d(xn) from zero is due to a faulty hypothesis, or 
perhaps just a small sample — the usual “random” fluctations associated with our random 
experiment? (We assume that the individuals in the sample are selected in some rational 
way — not, for example, at a small birthday party for quintuplets.) 

To proceed, we create many pseudo-random sample realizations d(xn) — say m realiza­
tions — each of which corresponds to n pseudo-random variates from the (assumed) uniform 
distribution. We then create a plot of the frequency versus outcome d — a histogram — 
of these results; for sufficiently large m, this histogram will approach the probability mass 
function for the goodness-of-fit random variable, D (of which d is a realization). We may 
then place our actual data — the true random variate, dn(xn

∗ ), associated with our sample 
of individuals — on our plot, and ask whether deviations as large as, or larger than, dn(xn

∗ ), 
are likely. (Note that n for our pseudo-random variates and random variates must be the 
same.) If yes, then there is no reason to reject the hypothesis; if no, then perhaps we should 
reject the hypothesis — we can not explain the lack of fit to “chance.” 

We now consider results for a particular sample realization, x̄n
∗ 
=51, from the Spring 2013 

2.086 class: students at lecture on particular day in February. For this particular sample 
realization the frequencies do not appear overly uniform: ϕn=51(i), 1 ≤ i ≤ n, is given by 3, 
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Figure 1: Test of goodness of fit for uniform distribution of birthdays over the twelve months 
of the calendar year. Plot adapted from William G Pritchett, 2.086 Spring 2013. 

1, 7, 2, 7, 5, 3, 3, 6, 2, 6, 6. (For example, seven individuals in the sample are born in each of 
March and May.) We present in Figure 1 the frequency histogram — approximate probability 
mass function function for D — derived from m = 500, 000 pseudo-random variates d(xn=51); 
we also plot, as the magenta vertical line, the actual data, d(xn

∗ 
=51). We observe that, under 

our hypothesis of a uniform distribution, it would not be particularly unlikely to realize a 
goodness-of-fit measure as large as d(xn

∗ 
=51). In fact, the goodness of fit of the data, d(x ∗ 

n=51), 
lies reasonably close to the “center” of histogram and within the “spread” of the distribution. 
(We will better understand these characteristics after the discussion of the next section.) In 
short, the apparent non-uniformity of the data is well within the expected fluctuations for a 
sample of n = 51 individuals and indeed a deviation of zero would be highly unlikely. 

A fourth application of pseudo-random variates: Monte Carlo simulation. It is often 
important to recreate a random environment to test, design, or optimize systems in realistic 
circumstances. A poker player might wish to simulate deals and hence hands similar to 
those which will be encountered in actual games. A pilot in a flight simulator might wish to 
respond to gusts which are similar to the real wind patterns which will be encountered in 
the air. Monte Carlo Simulation also serves to calculate various quantities — failure proba­
bilities, mean performance — which are difficult to evaluate in closed form. (In this sense, 
the birthmonth analysis above is an example of Monte Carlo simulation.) Finally, Monte 
Carlo simulation can address certain deterministic problems — transformed to correspond 
to the expectation of a (pseudo-) random variable — which are intractable by standard de­
terministic approaches; an important example is integration in many dimensions, the topic 
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of the next nutshell.
 

2.2 Expectation 

2.2.1 General Definition 

We first consider a univariate discrete random variable, X. Given some univariate function 
g, we define the expectation of g(X) as 

LL 
E(g(X)) ≡ fX (x o£ )g(x o£ ) ; (25) 

£=1 

we may sometimes write EX(g(X)) to emphasize the random variable and hence probability 
mass function with respect to which we evaluate the expectation.4 Thus the expectation of 
g(X) is a probability-weighted sum of g over the outcomes. We emphasize that E(g(X)) is 
not a random variable, or a random quantity; rather, it is a property of our function g and 
our probability mass function. Finally, we note the property that if g(X) = g1(X) + g2(X), 
then E(g(X)) = E(g1(X)) + E(g2(X)); more generally, the expectation of a sum of M 
functions of X will be equal to the sum of the individual expectations. 

In the next section we shall elaborate upon the notion of mean as one particular, and 
particularly important, expectation. But we present already here the result in order to better 
motivate the concept of expectation. The mean of a univariate discrete random variable X, 
µX , is the expectation of g(X) ≡ X. Hence 

LL 
µX ≡ fX (x o)x o . (26)£ £ 

£=1 

We observe that if we interpret fX as a distribution of mass, rather than probability, then µX 

is precisely the center of mass. (Note that, in some sense, we have already divided through 
by the total mass since our probability mass function is perforce normalized to sum to unity). 
We can thus interpret our mean µX as a “center of probability.” (There are other ways to 
define a center which we will discuss subsequently.) 

Similarly, in the next section we shall elaborate upon the intepretation of variance and 
standard deviation, but again we already present the result here. The variance of a univariate 
discrete random variable X, σ2 , is the expectation of g(X) ≡ (X − µX )

2 . HenceX 

LL 
o oσ2 ≡ fX (x )(x − µX )

2 . (27)X £ £ 

£=1 

Thus, continuing our physical interpretation, we see that σ2 is a kind of moment of inertia, X 

a measure of how much probability is near (or far) from the center of mass. We also define 

4In this context, we note that we can also evaluate EX (g(X)) as EV (V ) for V = f(X); however typically 
this apparently more direct route is in fact much more complicated. 
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the standard deviation, σX , as σX ≡ σ2 , which is now directly in the same units as X — X 

a kind of “root-mean-square” deviation. (We note that the expectation of (X − µX ) is zero 
— there are no torques about the center of mass — and hence we must arrive at a standard 
deviation through a variance.) 

In the bivariate case, the definition of expectation is very similar. Given some bivariate 
function g, we define the expectation of g(X, Y ) as 

LX LYLL 
o o o oE(g(X, Y )) = fX,Y (xi , y j )g(xi , y j ) . (28) 

i=1 j=1 

As before, we note the important property that if g(X, Y ) = g1(X, Y ) + g2(X, Y ), then 
E(g(X, Y )) = E(g1(X, Y )) + E(g2(X, Y )). But we also have two important additional 
properties. First, if g is solely a function of X, g(X), then E(g(X)) is simply EX (g(X)), 
the univariate expectation of g(X) with respect to the marginal probability mass function 
fX (and similarly if g is only a function of Y ). Second, if g(X, Y ) is of the form g1(X)g2(Y ) 
and X and Y are independent, then E(g(X, Y )) = EX (g1(X))EY (g2(Y )). These bivariate 
relations are readily extended to the n-variate case. 

In the bivariate case, we define the mean (µX , µY ) as (E(X), E(Y )), 

LX LYLL 
o o o µX ≡ E(X) ≡ fX,Y (xi , y j )xi , (29) 

i=1 j=1 

LX LYLL 
o o o µY ≡ E(Y ) ≡ fX,Y (xi , y j )yj . (30) 

i=1 j=1 

We can also define a variance, which in fact is now a 2 × 2 covariance matrix, as 

LL o o o LX LY
(x − µX )

2 (x − µX )(y − µY )o o i i jCovk,£ = fX,Y (xi , y ) . (31)j o o o(x − µX )(y − µY ) (y − µY )
2 

i j ji=1 j=1 

The center of mass and moment of inertia interpretations remain valid. Note that if the 
covariance matrix is diagonal then we say that X and Y are uncorrelated — a technical, not 
lay, term; furthermore, if X and Y are independent, then X and Y are uncorrelated (though 
the converse is not necessarily true). 

2.2.2 Mean, Variance, Standard Definition: Further Elaboration 

We have already defined the mean, variance, and standard deviation. We provide here a few 
examples and interpretations. 

Uniform, Bernoulli, and Binomial Distributions. For the discrete uniform probability mass √ 
function, fX 

unif;L, we obtain µ = (L + 1)/2 and σ2 = (L2 − 1)/12 (and, as always, σ = σ2). 
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We observe that the mean is at the “center” of the distribution, and the variance (or standard 
deviation) increases with L. 

We turn now to the Bernoulli probability mass function, fBernoulli;θ . Here, we find µ = θ 
and σ2 = θ(1 − θ). We note that if either θ = 0 or θ = 1 then there is no uncertainty in the 
Bernoulli distribution: if θ = 0, we obtain a Tail with probability one; if θ = 1, we obtain a 
Head with probability one. In these certain cases, σ2 = 0, as all the mass is concentrated on 
a single outcome. 

CYAWTP 3. Derive the mean and variance of the Bernoulli probability mass function. 

Finally, we consider the binomial probablility mass function, fbinomial;θ,n. In this case we 
find µ = nθ and σ2 = nθ(1 − θ). 

Frequentist Interpretation of Mean. Let us consider a very simple game of chance. We 
consider the flip of a possibly unfair coin — hence Tail and Head distributed according to 
Bernoulli with parameter θ, 0 ≤ θ ≤ 1. If the outcome is a 0, a Tail, you neither win 
nor lose; if the outcome is a 1, a Head, you win $1.00. Hence after k flips your average crevenue per flip, Rk, will be Rk = #k(1)/k = ϕck(1), where we recall that #c k(·) and ϕck(·) are 
respectively the cumulative number function and cumulative frequency function associated 
with a particular event (here, a 1, or Head). However, we know that in the limit k → ∞ the 
cumulative frequency function will approach P (1) = θ. Hence the mean of the probability 
mass function, θ, is the average revenue per flip in the limit of many flips. 

We can show more generally that if we consider a game of chance with L outcomes in 
which for outcome f the pay-off (per game) and probability is xo and p£, respectively, then in £ 

the limit of many games the average revenue per game is the mean of the probability mass 
function fX (x

o) = p£, 1 ≤ f ≤ L.£ 

Chebyshev’s Inequality. We can understand that the variance (or standard deviation) indi­
cates the extent to which the probability mass function is “spread out.” We also understand 
that the variance is the expected square deviation from the mean. But we can also estab­
lish a more quantitative connection between variance and the magnitude and likelihood of 
deviations from the mean: Chebyshev’s Inequality. 

Assume that X is distributed according to probability mass function for which the mean 
and standard deviation are given by µX and σX , respectively. Given some positive number 
κ, Chebyshev’s Inequality guarantees that 

1 
P (|x − µX | > κσX ) ≤ . (32)

κ2 

We recall that P (E) is read “probability of event E”; in (32), E is the union of all outcomes 
xo such that |xo − µ| > κσ. This inequality is typically not very sharp, or even useful, but it £ £ 

is illustrative: the standard deviation σ is the relevant scale of the probability mass function 
such that outcomes several σ from the mean are very unlikely. 
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Sample Mean: Mean and Variance. As an example of the various relations proposed, we 
¯may calculate the mean and sample variance of the sample mean Xn. To begin, we note that 

L L 
E( ¯

1 
n n

Xn) = E( Xi) = E(Xi) , (33) 
n 

i=1 i=1 

since the expectation of a sum is the sum of the expectations. We next note that E(Xi) = 
EXi (Xi): the expectation may be evaluted in terms of the marginal probability mass function 
of Xi. But for i = 1, . . . , n, EXi (Xi) = µX , the mean of the common probability mass 
function fX from which we draw our random sample. Thus we obtain µ ̄ = (1/n)nµX = µX .Xn 

We will later rephrase this result in the context of estimation: X̄n is an unbiased estimator 
for µX . Note that we did not take advantage of independence in this demonstration. 

We may also calculate the variance of our sample mean. To begin, we note that 

L L 
σ2

¯ = E((( 
1 

n

Xi) − µX )
2) =E(( 

1 
n

(Xi − µX ))
2) (34)Xn n n 

i=1 i=1 LL1 
n n

= 
2 

E((Xi − µX )(Xi ' − µX )) . (35) 
n

i=1 i ' =1 

But we now invoke independence to note that, for i = i ' , E((Xi − µX )(Xi ' − µX )) = E(Xi − 
µX )E(Xi ' − µX ); but E(Xk − µX ) = 0, 1 ≤ k ≤ n, by definition of the mean. Thus only the 
terms i = i ' in our double sum survive, which thus yields 

L σ21 
n

1 
σ2 = E((Xi − µX )

2) = nσ2 = X . (36)X̄n n2 n2 X n 
i=1 

Note that in this derivation independence plays a crucial role. We observe that the variance 
of X̄n is reduced by a factor of n relative to the variance of X. This result, derived so simply, 
is at the very center of all statistical estimation. We can readily understand the reduction 
in variance — the greater concentration about the mean: the (independent) fluctuations of 
the sample cancel in the sample-mean sum; alternatively, to obtain an outcome far from the 
mean, all the (independent) Xi, 1 ≤ i ≤ n, must be far from the mean — which is very 
unlikely. 

3 Continuous Random Variables 

A continuous random variable is a random variable which yields as outcome no longer a finite 
(or countably finite) number of values, but rather a continuum of outcomes. This allows us 
to describe a much broader range of phenomenon. 
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3.1 General Univariate Distribution
 

We denote our random variable by X. We assume that X yields an outcome in the interval 
[a, b]: X may take on any value x, a ≤ x ≤ b. We next introduce a probability density 
function. A probability density function is to a continuous random variable as a probability 
mass function is to a discrete random variable: a mapping between outcomes in the sample 
space and probabilities. However, in the the case of continuous variables, a few subtleties 
arise. 

We shall denote our probability density function associated with random variable X by 
fX . We shall require that fX (x) ≥ 0, a ≤ x ≤ b, and furthermore b 

fX (x) dx = 1. (37) 
a 

We then express the probability of event [x, x + dx], which for clarity we also write as 
x ≤ X ≤ x + dx, as 

P (x ≤ X ≤ x + dx) = fX (x) dx. (38) 

(Note that P (·) refers to the probability of an event described in terms of outcomes in 
the sample space. For continuous random variables we shall explicitly include the random 
variable in the definition of the event so as to avoid conflation of the outcomes and realiza­
tions.) In the same way that a continuous distribution of mass is described by a density, so 
a continuous distribution of probability is described by a density. We may then express the 
probability of event [a ' , b ' ], for a ≤ a ' ≤ b ' ≤ b, as  b ' 

P (a ' ≤ X ≤ b ' ) = fX (x) dx. (39) 
' a 

In the same way that we identify the mass associated with one segment of a (say) bar as the 
integral of the density over the segment, so we identify the probability associated with one 
segment of our interval as the integral of the probability density over the segment. Finally, 
we note from our definitions that  b 

P (a ≤ x ≤ b) = fX (x) dx = 1; (40) 
a 

the probability that some event in our sample space occurs is, and must be, unity. 
We next introduce a cumulative distribution function,  x 

FX (x) = fX (x ' ) dx ' , (41) 
a 

for a ≤ x ≤ b. We may then express 

P (x ' ≤ x) = FX (x) . (42) 
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We note that FX (a) = 0, FX (b) = 1, FX (x) is a non-decreasing function of x (since fX is 
non-negative), and finally 

P (a ' ≤ x ≤ b ' ) = FX (b 
' ) − FX (a ' ). (43) 

In general FX need not be (left) continuous, and can exhibit jumps at values of x for which 
there is a concentrated mass; we shall restrict attention to random variables for which FX is 
continuous. 

We now introduced the expection of a function g(X). In general, sums over probability 
mass functions for discrete random variables are replaced with integrals over probability den­
sity function for continuous random variables — as we have already seen for the calculation 
of the probability of an event. For expectation, we obtain 

b 

E(g(X)) = g(x)fX (x) dx . (44) 
a 

As in the discrete case, there are several functions g(x) of particular interest. The choice 
g(X) = X yields the mean (center of mass), 

b 

µX ≡ E(X) = xfX (x) dx ; (45) 
a 

the choice g(X) = (X − µX )
2 yields the variance, 

b 

σ2 ≡ E((X − µX )
2) = (x − µX )

2fX (x) dx. (46)X 
a 

σ2The standard deviation is then simply σX ≡ X . The interpretation of these quantities is 
very similar to the discrete case. (In the continuous case it is possible that the variance may 
not exist, however we shall only consider probability mass functions for which the variance 
is finite.) 

CYAWTP 4. Let X be any random variable and associated probability mass function 
with mean and variance σ2 Introduce new = (X − µX )/σX .µX X . a random variable V 
Demonstrate that µV = 0 and σV 

2 = 1. 

The cumulative distribution function can serve to define the α-quantile of X, x̃α: 

FX (x̃α) = α ; (47) 

in words, the probability of the event x ≤ x̃α is α; more informally, α of the population 
takes on values less than x̃α. We note that x̃α=1/2 is the median: half the population takes 
on values less than x̃α=1/2, and half the population takes on values greater than x̃α=1/2. To 
facilitate the calculation of x̃α we may introduce the inverse of the cumulative distribution 
function, FX 

−1(p): FX 
−1(0) = a, FX 

−1(1) = b, and FX 
−1(α) = x̃α. 
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3.2 The Continuous Uniform Distribution 

We begin with the univariate case. The probability density function is very simple: 

funif;a,b 1 
X (x) ≡ , a ≤ x ≤ b . (48)

b − a 

It directly follows that the cumulative distribution function is given by FX 
unif;a,b(x) = (x − 

a)/(b−a) for a ≤ x ≤ b. Finally, for this particular simple density, we may explicitly evaluate 
(39) as 

b ' − a ' 
P (a ' ≤ x ≤ b ' ) = . (49)

b − a 

This last expression tells us that the probability that X lies in a given interval is proportional 
to the length of the interval and independent of the location of the interval: hence the 
description “uniform” for this density. 

We may readily calculate the mean of X, µX = (a + b)/2, the variance, σ2 = (1/12)(b2 −X 

a2), and hence the standard deviation, σX ≡ σ2 We note the similarity of these expres­
sions to the case of a discrete uniform random variable. As expected, the center of mass is 
the center of the “bar,” and the moment of inertia increases as the length of the bar increases. 
We can also readily deduce from the cumulative distribution function that the median of the 
distribution is given by x̃α=1/2 = (a + b)/2; in this case, the median and mean coincide. 

A random variable U which is distributed according to the continuous uniform density 
over the unit interval [0, 1], sometimes referred to as the standard uniform distribution, is of 
particular interest. In that case a = 0 and b = 1 and hence fU (u) = 1. If we are given a 
random variable U distributed according to the continuous uniform density over [0, 1], then 
a random variable X distributed according to the continuous uniform distribution over [a, b] 
may be expressed a function of U : 

X . 

X = a + (b − a)U . (50) 

Note it is clear that since U takes on values over the interval [0, 1], then X takes on values 
over [a, b]. But the statement (50) is stronger: X defined in terms of U according to (50) will 
be distributed according to the continuous uniform density (but now) over [a, b]. This result 
is intuitive: the shift a does not affect the probability; the “dilation” b − a just scales the  b
probability — still uniform — to ensure

a fX (x) dx = 1. Given an pseudo-random sample 
realization of U , (u1, u2, . . . , un), we can generate a pseudo-random sample realization of X, 
(x1, x2, . . . , xn), for xi = a + (b − a)ui, 1 ≤ i ≤ n. 

The continuous uniform distribution is in fact very useful in the generation of pseudo-
random variates for an arbitrary (non-uniform) discrete random variable. Let us say that we 
wish to consider a discrete random variable with sample space v£

o , 1 ≤ f ≤ L, and associated 
probabilities p£, 1 ≤ f ≤ L, such that fV (v

o) = p£, 1 ≤ f ≤ L. We may readily express V as£ 

a function of a uniform random variable U over the interval [0, 1], V = g(U). In particular, 
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g(U) = v1 
o if U ≤ p1, and then 

L£−1 £L 
g(U) ≡ v o if pi ≤ U ≤ pi, 2 ≤ f ≤ L . (51)£ 

i=1 i=1 

We can see that our function makes good sense: for example, the probability that V = v1 
o 

is the probability that U lies in the interval [0, p1] — which is simply p1, as desired; the 
probability that V = v2 

o is the probability that U lies in the interval [p1, p1 + p2], which 
is simply (the length of the interval) p2. Given a pseudo-random sample realization of U , 
u1, u2, . . . , un, we can generate a pseudo-random sample realization of V , v1, v2, . . . , vn, as 
vi = g(ui), 1 ≤ i ≤ n. 

CYAWTP 5. Consider the distribution for the random variable V of CYAWTP 1. Find 
a function g such that V may be expressed as g(U) for U a continuous uniform random 
variable over the unit interval [0, 1]. Indicate how you can generate a pseudo-random sample 
realization for V from a pseudo-random sample realization of U . 

We now consider the bivariate continuous uniform probability density. We denote our 
random variable as (X, Y ). We assume that X takes on values a1 ≤ x ≤ b1 and Y takes on 
values a2 ≤ Y ≤ b2 such that (X, Y ) takes on values in the rectangle R ≡ {(x, y) |a1 ≤ x ≤ 
b1, a2 ≤ y ≤ b2}. Our probability density is then given by 

1 1 
fX,Y (x, y) = ≡ , (52)

(b1 − a2)(b2 − a2) AR 

where AR is the area of our rectangle R. Then 

P (x ≤ X ≤ x + dx, y ≤ Y ≤ y + dy) = fX,Y (x, y)dxdy , (53) 

and, for any subdomain (“event”) D of R, 

AD
P ((X, Y ) ∈ D) = fX,Y dxdy = , (54) 

D AR 

where AD is the area of D. We see that the probability that (X, Y ) lies in a given subdomain 
D is proportional to the area of the subdomain and independent of the location or shape of 
the subdomain: hence the appellation “uniform.” Note that P ((X, Y ) ∈ R) = 1, as must be 
the case. 

We can find the marginal probability density functions, 

b2 b2 1 1 
fX (x) = fX,Y (x, y)dy = = ; (55)

(b1 − a1)(b2 − a2) b1 − a1a2 a2 

b1 b1 1 1 
fY (y) = fX,Y (x, y)dx = = . (56)

(b1 − a1)(b2 − a2)a1 a1 
b2 − a2 
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We directly notice that fX,Y (x, y) = fX (x)fY (y), and hence X and Y are independent. 
Again, as in the discrete case, independence follows from uniformity. 

We can take advantage of independence in the generation of sample realizations. In par­
ticular, we can first generate random (or pseudo-random) sample realizations (x1, x2, . . . , xn) 
and (y1, y2, . . . , yn) for X and Y respectively by independent application of our translation-
dilation transformation of (50). Then, armed with these random sample realizations for X 
and Y , (x1, x2, . . . , xn) and (y1, y2, . . . , yn), respectively, we can form a random (or pseudo-
random) sample realization for (X, Y ) as ((x1, y1), (x2, y2), . . . , (xn, yn)). 

3.3 The Normal Distribution 

The normal density, also known as the Gaussian distribution, is perhaps the most well-known 
of any probability density function. We consider here only the univariate case. We note that 
the normal density is defined over the entire real axis, so that we now take a = −∞ and 
b = ∞. 

The probability density function for a normal random variable X is given by 

1 −(x − µ)2 

fnormal;µ,σ = √ exp ( ) , −∞ < x < ∞ . (57)
2σ22πσ 

We note that the density function is symmetric about µ. The associated cumulative distri­
bution function is denoted FX 

normal;µ,σ(x). 
It can be shown that µX = µ, and σX 

2 = σ: hence, for the normal density, the two 
parameters which define the family are precisely the mean and variance of the density. We 
also conclude from symmetry of the probability density function that values above and below 
the mean are equally likely, and the hence the median is also given by µ. We can evaluate 
additional quantiles from the cumulative distribution function: x̃0.841 ≈ µ+σ, x̃0.977 ≈ µ+2σ, 
and x̃0.9985 ≈ µ + 3σ; also x̃0.975 ≈ µ + 1.96σ. From this last result, and symmetry, we know 
that only 5% of the population resides in the two “tails” x ≤ µ − 1.96σ and x ≥ µ + 1.96σ. 

CYAWTP 6. Sketch the normal density for µ = 1, σ = 1, for µ = 0, σ = 4, and for 
µ = 3, σ = .2. In the last case, indicate roughly the two (symmetric) tails which contain 
roughly 5% of the population. 

A random variable, say Z, which is distributed according to the normal density with 
fnormal;0,1mean 0 and variance 1, hence fZ (z) = Z (z), is know as a standard normal random 

variable. The cumulative distribution function for Z is given a special name: Φ(z). It can 
be shown that if Z is a standard normal variable, then 

X = µ + σZ (58) 

is a normal variable with mean µ and variance σ2 . Note that, conversely, if X is a normal 
random variable with mean µ and variance σ2, then Z = (X − µ)/σ is a standard normal 
variable: this is a special case of CYAWTP 4. We can also deduce the quantiles of X 
from the quantiles of Z: x̃α = µ + σΦ−1(p); for example, Φ−1(0.975) ≈ 1.96, and hence 
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x̃0.975 = µ +1.96σ. The transformation (58) is invoked often: given a pseudo-random sample 
realization of Z, (z1, z2, . . . , zn), we can generate a pseudo-random sample realization of X, 
(x1, x2, . . . , xn), for xi = µ + σzi, 1 ≤ i ≤ n. 

The normal density is ubiquitous for many reasons. The domain is infinite, so there is 
no need to artifically truncate. The density is defined by a single “location” parameter, µ, 
also the mean, and a single “scale” parameter, σ (the standard deviation); it is often easy 
to choose these parameters in a plausible fashion even absent extensive experimental data. 
Gaussians also play well together: the sum of M independent Gaussian random variables 
is, in fact, a Gaussian random variable, with mean (respectively, variance) the sum of the 
means (respectively, the sum of the variances). 

But the Gaussian is perhaps most noteworthy for its universality, as summarized in the 
“Central Limit Theorem,” of which we provide here a particular, relatively restrictive, state­
ment. We are given a random variable X distributed according to a prescribed probability 
mass or density function, fX . (This mass or density must satisfy certain criteria; we do 
not provide technical details.) We next construct a random sample and form the associated 

¯sample mean, Xn. It can then be shown that, as n → ∞, and we consider larger and larger 
samples, 

X̄n − µX
P √ ≤ z → Φ(z) ; (59)

σX / n 

in other words, the cumulative distribution function of the sample mean (shifted and scaled to 
zero mean and unit variance) approaches the cumulative distribution function of a standard 
normal random variable. This approximation (59) is often valid even for quite small n: for 
example, for a Bernoulli random variable, X, the normal approximation is accurate to a few 
percent if nθ ≥ 10 and n(1 − θ) ≥ 10. Note that, like Chebyshev’s Inequality, (59) illustrates 
the connection between mean, variance, and large deviations; however (when applicable), 
(59) is asymptotically an equality. 

The Central Limit Theorem also lends some credence to the choice of a Gaussian to model 
“unknown” effects. If we think of randomness as arising from many independent sources, all 
of which add (and cancel) to yield the final result, then the Central Limit Theorem suggests 
that these many additive sources might well be approximated by a Gaussian. And indeed, 
it is often the case that phenomena can be well modeled by a normal probability density. 
However, it is also often the case that there particular constraints present in any paticular 
system — related to positivity, or (un)symmetry, or correlation — which create significant 
non-normality in the distribution. 

4 Estimation of the Mean 

4.1 Parameter Estimation: Motivation 

We must often estimate a parameter associated with a probability mass function or probabil­
ity density function. These estimates can serve two important but quite different purposes: 
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to calibrate a probability mass or density function for subsequent service say in Monte Carlo 
studies; to make inferences about the underlying population and ultimately to make decisions 
informed by these inferences. 

As an example of calibration, we refer to the distribution of wind gust velocity. We may 
wish to take advantage of the probability density function in a flight simulator, but we must 
first determine an appropriate underlying probability density function, and subsequently 
estimate the associated parameters. For example, we may say that the wind gust velocity 
follows a normal distribution, which in turn requires calibration of the mean — zero by 
definition of a gust — and the variance — a priori unknown. As an example of inference, we 
consider a Bernoulli population. The parameter θ may represent a probability of failure, or 
the fraction of parts from an assembly line which do not satisfy quality standards, or indeed 
the fraction of a (real, people) population who will vote for a particular candidate. In these 
cases, the parameter is directly of interest as regards subsequent decisions.5 

In this section we develop estimators for the mean of a probability mass or density 
function. In the particular case of a Bernoulli population, the mean is simply the Bernoulli 
parameter, θ. 

4.2 Sample Mean Estimator: General Case 

In our discussion of discrete random variables, we demonstrated that the sample mean has 
very nice properties. In fact, these properties extend to the case of probability density 
functions as well. 

We introduce a univariate random variable, discrete or continuous, X, distributed ac­
cording to a probability mass function or probability density function fX . We then intro­

¯duce a random sample Xn ≡ (X1, X2, . . . , Xn). We then define the sample mean Xn as 
1 a n ¯¯ ≡ is simply the usual arithmetic average of the Xi, 1 ≤ i ≤ n. We can Xn n i=1 Xi: Xn 

then demonstrate — as already derived for the discrete case — the following properties: 
X̄n → µX as n → ∞; E(X̄n) = µX ; σX̄n 

= σX / 
√ 
n. 

¯It is thus natural to define an estimator for µX , µ̂X , as µ̂X ≡ Xn. (Because the expectation 
¯ ¯of Xn = µX , the quantity we wish to estimate, Xn is denoted an unbiased estimator.) As we 

take larger and larger samples, µ̂X will approach µX : the variance of our estimator decreases, 
and thus the expected deviation of our estimator, µ̂X , from µ ̄ = µX — which we wish to Xn 

estimate — will be smaller and smaller; we can further state from Chebyshev’s Inequality √ 
that the probability that µ̂X will differ from µX by more than, say 10σX / n, will be less than 
.01. We thus have a kind of probabilistic convergence of our estimator. It is important to 

¯note that µ̂X is a random variable: each realization Xn → (x̄1, x̄2, . . . , x̄n) will be different. 
The results summarized above suggest that the sample mean is indeed a good estimator 

for the mean of a population, and that our estimator will be increasingly accurate as we 
increase the sample size. It is possible to develop more quantitative, and sharp, indicators of 
the error in our estimator: confidence intervals, which in turn are based on some estimate of 

5Another example of a Bernoulli parameter is P (R | T ) of the nutshell Introduction to Probability and 
Statistics. 
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the variance of the population. We shall consider the latter in the particular, and particularly 
simple, case of a Bernoulli population. 

4.3 Sample Mean Estimator: Bernoulli Population 

For a Bernoulli population, as already indicated, the mean is simply our parameter θ. We 
shall thus denote our sample mean estimator as Θ̂n; we denote our sample estimate as θ̂n. 
Note Θ̂n → θ̂n: an application of our sample mean estimator, Θ̂n — a random variable — 
yields a sample mean estimate, θ̂n — a real number. 

Our results for the general sample-mean estimator directly apply to the Bernoullli pop­
ulation, and hence we know that Θ̂n will converge to θ as n increases, that E(Θ̂n) = θ, and 
that E((X̄n − θ)2) = θ(1 − θ)/n. But we now also provide results for confidence intervals: 
we consider two-sided confidence intervals, though it is also possible to develop one-sided 
confidence intervals; we consider normal-approximation confidence intervals, though it is also 
possible to develop (less transparent) exact confidence intervals. 

We first introduce our confidence interval   
2 22 2Θ̂n(1−Θ̂n) Θ̂n(1−Θ̂n)ˆ z

Θn 
z ˆ z

Θn 
zγ γ γ γ− zγ+
 +
 +
 + zγ +
2 22n 4n 2n 4n

(Θ̂n
n n

, γ) ≡ [
[CI]n ], (60)
,

z2 
γ 

n n 

where γ is our desired confidence level, 0 < γ < 1, say γ = 0.95, and zγ = Φ−1((1 + γ)/2). 
Note that γ = 0 yields zγ = 0, and as γ → 1 — much confidence — zγ → ∞; for γ = 0.95, 
zγ = 1.96. We note that Θ̂n is a random variable, and hence [CI]n(Θ̂, γ) is a random interval. 
We can then state that 

P (θ ∈ [CI]n(Θ̂n, γ)) ≈ γ . (61) 

The ≈ in (61) is due to our (large-sample) normal approximation, as elaborated in the 
Appendix. We shall consider the approximation valid if nθ ≥ 10 and n(1 − θ) ≥ 10; under 
these requirements, the errors induced by the large sample approximation (say in the length 
of the confidence interval) are on the order of 1% and we may interpret ≈ as =. 

We can now state the practical algorithm. We first perform the realization: we draw 
the necessary sample from the Bernoulli population, Xn → xn ≡ (x1, x2, . . . , xn), and we aˆ 1 nsubsequently evaluate the associated sample-mean estimator, θn = xi. We next 

n i=1 
compute the confidence interval associated with our sample-mean estimate,   

2zγ1 +
 1 +
 

2 22 2θ̂n(1−θ̂n) θ̂n(1−θ̂n)θ̂n θ̂n 
z z z zγ γ γ γ− zγ+
 +
 +
 + zγ +
2 22n 4n 2n 4n

[ci]n(θ̂n, γ) ≡ [
 n n 
] . (62)
,
2 2z zγ γ1 +
 1 +
 

n n 

(In cases in which we consider confidence intervals for several different quantities, we will 
denote the confidence interval for θ more explicitly as [ciθ]n.) We can then state that, 
with confidence level γ, the Bernoulli parameter θ will reside within the confidence interval 
[ci]n(θ̂n, γ). Recall that, say for γ = 0.95, zγ = zγ=0.95 ≈ 1.96. We should only provide 
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ˆ(or in any event, quantitatively trust) the confidence intervals if the criterion nθn ≥ 10, 
n(1 − θ̂n) ≥ 10, is satisfied. (In principle, the criterion should be stated in terms of θ; 
however, since we are not privy to θ, we replace θ with θ̂n ≈ θ.) 

CYAWTP 7. Invoke the Bernoulli GUI for θ = 0.4. Consider first n = 400: is θ inside the 
confidence interval (62) — recall θ̂n=400 ≡ ϕn=400(1) — for confidence level γ = 0.95? for 
confidence level γ = 0.5? for confidence level γ = 0.1? Now consider n = 4000: is θ inside 
the confidence interval for γ = 0.95? 

We next characterize this confidence interval result. First, there is the confidence level, 
γ; γ is, roughly, the probability that our statement is correct — that θ really does reside in 
[ci]n(θ̂n, γ). We can be a bit more precise, and provide a frequentist interpretation. If we were 
to construct many sample-mean estimates and associated confidence intervals — in other 
words, repeat (or repeatedly realize) our entire estimation procedure m times — in a fraction 
γ of these m(→ ∞) realizations the parameter θ would indeed reside in [ci]n(θ̂n, γ). (Note 
that for each realization of the estimation procedure we perform n Bernoulli realizations a n(X → xi)i=1 ...,n to form θ̂n = (1/n) i=1 xn.) Conversely, in a fraction of 1 − γ of our 
estimation procedures, the Bernoulli parameter θ will not reside in the confidence interval. 
In actual practice, we will only conduct one realization — not m > 1 realizations — of our 
estimation procedure. How do we know that our particular estimation procedure is not in 
the unlucky 1 − γ fraction? We do not. But note that in most real-life experiments there are 
many uncertainties, mostly unquantified; at least for our confidence interval we can assess 
and control the uncertainty. We also remark that even if θ does not reside in the confidence 
interval, it may not be far outside. 

Second, there is the length of the confidence interval, which is related to the accuracy of 
our prediction, as we now quanity. In particular, we now note that since (with confidence 
level γ) θ can reside anywhere in the confidence interval, the extremes of the confidence 
interval constitute an error bound. In what follows, in order to arrive at a more transparent 
result, we shall neglect in the confidence interval the terms zγ 

2/n relative to θ̂n. We may 
obtain an absolute error bound, 

|θ − θ̂n| ≤ AbsErrn(θ̂n, γ) , (63) 

for � 

AbsErrn(θ̂n, γ) ∼ zγ 
θ̂(1 − θ̂) 

. (64) 
n 

(Given the terms neglected, this result is, in principle, valid only asymptotically as n → ∞; 
in practice, rather modest n suffices.) We may also develop a relative error bound, 

|θ − θ̂n| ≤ RelErrn(θ̂n, γ) , (65)
θ̂n 
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for
 

(1 − θ̂)
RelErrn(θ̂n, γ) ∼ zγ . (66)

θ̂n 

(Again, the result is, in principle, valid only asymptotically as n → ∞; in practice, rather 
modest n suffices.) 

We note that both the absolute and relative error bounds scale with zγ : as we demand 
more confidence, γ → 1, zγ will tend to infinity. In short, we pay for inceased confidence, 
or certainty, with decreased accuracy. Alternatively, we might say that as we become more 
certain of our statement we become less certain of the actual value of θ. Typically γ is chosen 
to as γ = 0.95, in which case zγ = 1.96; however, there may be circumstances in which more 
confidence is desired. 

In general, convergence of θ̂n → θ is quite slow: the error decreases only as 1/ 
√ 
n; to 

double our accuracy, we must increase the size of our sample fourfold. If we wish to incur 
an absolute error no larger than tAbs, then we should anticipate (for γ = 0.95) a sample size 
of roughly 1/t2 . The situation is more problematic for small θ, for which we must consider 
the relative error. In particular, if we wish to incur a relative error no larger than tRel, then 
we should anticipate (for γ = 0.95) a sample size of roughly 4/(θt2 ). From the latter we Rel

conclude, correctly, that it is very difficult to estimate accurately the probability of rare 
events; an important example of a rare event is failure of engineering systems. 

5 Perspectives 

Our treatment of random variables — from definition and characterization to simulation and 
estimation — is perforce highly selective. For a comprehensive introduction to probability, 
random variables, and statistical estimation, in a single volume, we recommend Introduction 
to the Theory of Statistics, AM Mood, FA Graybill, and DC Boes, McGraw-Hill, 1974. 

6 Appendix: Derivation of Confidence Interval 

To start, we note from (59) that, for sufficiently large n, ⎛ ⎞ 
(Θ̂n − θ)

P ⎝ ≤ z⎠ ≈ Φ(z) . (67) 
θ(1−θ) 

n 

We may take advantage of the symmetry of the standard normal density to rewrite (67) as ⎛ ⎞ 
Θ̂n − Θ 

P ⎝−z ≤ ≤ z⎠ ≈ Φ(z) − Φ(−z) = Φ(z) − (1 − Φ(z)) = 2Φ(z) − 1 . (68) 
θ(1−θ)
 

n
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We now choose 2Φ(zγ ) − 1 = γ, where γ shall denote our confidence level; thus zγ = 
Φ−1((1 + γ)/2). Note that γ = 0 yields zγ = 0, and as γ → 1 — much confidence — 
zγ → ∞; for γ = 0.95, zγ = 1.96. 

We next note that the event in (68) can be “pivotted” about θ to yield an equivalent 
statement     

P Θ̂n − zγ
θ(1 − θ) ≤ θ ≤ Θ̂n + zγ

θ(1 − θ) ≈ γ ; (69) 
n n

note that in (69) we also substitute γ for 2Φ(zγ ) − 1. In the present form, (69) is not useful 
since θ appears both “in the middle” — as desired — but also in the limits of the interval. 
To eliminate the latter we note that the event in (69) is in fact a quadratic inequality for θ, 

2 2z zγ γ 
Θ2θ2(1 + ) + θ(−2Θ̂n − ) + ˆ n ≤ 0 , (70) 

n n 

which has solution 

2 22 2Θ̂n(1−Θ̂n) Θ̂n(1−Θ̂n)ˆ z
Θn 

z ˆ z
Θn 

zγ γ γ γ− zγ+
 +
 +
 + zγ +

4n2 4n22n 2nn n≤ θ ≤
 . (71)
2 2z zγ γ1 +
 1 +
 

n n 

We may thus define our confidence interval as 

Θ̂n +
 
2 
γz

2n 

22 2Θ̂n(1−Θ̂n) Θ̂n(1−Θ̂n)z ˆ z
Θn 

zγ γ γ− zγ +
 +
 + zγ +
2 24n 2n 4n
[CI]n(Θ̂n, γ) ≡ [
 n n 

] . (72)
,
2 2z zγ γ1 +
 1 +
 
n n 

We then conclude from (69), (71), and (72) that 

P (θ ∈ [CI]n(Θ̂n, γ)) ≈ γ . (73) 

Note that our confidence interval [CI]n(Θ̂n, γ) is a random interval. 
The ≈ in (73) is due to the normal approximation in (67). In practice, if nθ ≥ 10 and 

n(1−θ) ≥ 10, then the error induced in the confidence interval by the normal approximation 
will be on the order of several percent at most. 
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