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1 Preamble

In engineering analysis we must often predict the behavior of a univariate function — a relation
between an input (independent variable) and an output (dependent variable) — in order to design or
optimize a system; for example, we may wish to understand the effect of temperature on the speed
of sound in the design of an acoustical space. Unfortunately, in most cases we are not provided
with a closed-form representation of the function, and instead we must base our prediction on
limited (experimental) observations or (computational) evaluations. In this nutshell, we answer
the following question: if we know output values at some finite number of input values — a “look-
up table” — how can we estimate the output for inputs “in between” the input values of our
look-up table? We consider here one approach to this approximation problem: interpolation. (In a
subsequent nutshell we consider an alternative approach, more suitable for noisy data: least-squares
projection.)

We introduce in this nutshell the interpolation framework, and we present particular interpola-
tion schemes: piecewise-constant, left-endpoint; piecewise-linear. We then develop the concepts of
discretization, convergence, convergence rate or order, and resolution; we provide local and global
error bounds based on the Mean Value Theorem and Fundamental Theorem of Calculus; we dis-
cuss and demonstrate the role of smoothness; we introduce the definition of operation count and
FLOPs (floating point operations); and we establish the connection between accuracy and compu-
tational cost. We provide both a global domain formulation and also a more local “point-based”
formulation.

Prerequisites: univariate differential and integral calculus.

2 DMotivation: Example

Let us consider a concrete example of interpolation. In Table 1, we are given the speed of sound
in air for several different values of temperatures ranging from 230K (or —43°C) — cold air at
high altitude — to 310K (or 37°C) — hot air at sea level on a summer day. We now wish to
approximate the speed of sound for some given outside temperature, and in particular a temperature
not represented in Table 1. Here, the temperature is the independent variable (also denoted input)
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— what we are given — and the speed of sound is the dependent variable (also denoted output) —
what we wish to know.

How might we estimate the speed of sound for an outside temperature of, say, 283K (10°C)? Can
we say anything about the accuracy of our estimate? What is the computational cost associated
with the construction of our estimate? The material provided in this nutshell will help you answer
these questions, not just for our particular example, but also more generally for any input—output
relationship.

temperature (K) ‘ 230 240 250 260 270 280 290 300 310
speed of sound (m/s)‘3()4.0 310.5 316.9 323.2 329.4 3354 341.4 347.2 3529

Table 1: Variation in the speed of sound in air as a function of the temperature.t

3 Piecewise-Constant, Left-Endpoint Interpolation

We first consider arguably the simplest form of interpolation: piecewise-constant, left-endpoint
interpolation. The origin of the name will become clear shortly.

Let us first describe the procedure in words for several concrete instances. We wish to approxi-
mate the speed of sound at a given temperature of interest, say 283K. We first find the temperature
in Table 1 which is closest to 283K but also smaller than (or less than or equal to) 283K: 280K. We
next extract from Table 1 the speed of sound associated with the closest-but-smaller temperature,
280K: 335.4m/s. Finally, we now approximate, or estimate, the speed of sound at the temperature
of interest, 283K, by the speed of sound associated with the closest-but-smaller temperature, 280K:
335.4m/s. We consider a second example: we are given the temperature of interest, 248K; we find
in Table 1 the closest-but-smaller temperature, 240K; we extract from Table 1 the speed of sound
associated with the closest-but-smaller temperature, 310.5m/s; we approximate the speed of sound
at 248K by 310.5m/s. Note that our estimate depends on both the temperature of interest and the
particular set of (temperature, speed of sound) pairs available — the entries of Table 1.

We now formalize the procedure. We shall denote the temperature, our independent variable,
as x, and the speed of sound, our dependent variable, as y. We further denote the mapping from
the temperature to the speed of sound as y = f(z): f is the function which, given a value of the
temperature x, returns the value of the speed of sound, y = f(z). We assume here that f exists but
that we do not know the form of f; rather, we only know the values of y = f(z), or equivalently
the pairs (z, f(z)), for the nine temperatures indicated in Table 1. The methodology we develop
in terms of x and f(z) will of course apply to any independent variable (input) and dependent
variable (output) — hence the power of abstraction — though you may think of temperature and
speed of sound as a concrete application.

Let us say that we are interested in input values z in some interval [a,b]. (We recall that [a, ]
refers to the closed interval — values of the temperature x such that a < x < b. The open interval
(a,b) refers to = such that a < x < b; we may also consider various combinations such as (a, b],
which refers to x such that a < x < b.) We first introduce the discretization depicted in Figure 1. A
discretization, or “grid,” is a decomposition of the interval [a, b] into a number of small pieces for the
purposes of construction and analysis of our approximation. In our particular case, we subdivide

The “data” in this Table are generated synthetically from the standard sound-speed relation introduced in
CYAWTP 2.



the domain [a,b] into N — 1 segments, S;,1 < i < N — 1, delineated by N points, z;,1 < i < N.
Note that segment .S; is given by the interval [x;, z;1+1] and is of length h; = x;11 — x;; for simplicity,
we shall assume here that the segments are of equal length, hy =--- =hy_1 =h = (b—a)/(N—1),
however in general this need not be the case. In our speed of sound example, for the discretization
provided in Table 1, a = 230K, b = 310K; N = 9; z; = 230K, o = 240K, z3 = 250K, ...;
S1 = [x1, 2] = [230,240]K, S = [z2, x3] = [240,250]K, ...; h = 10K. Note that the notation “="
should be read as “is defined to be” or “is given as”.
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Figure 1: Discretization of the segment [a, b] into N — 1 segments defined by N input values.

We now wish to approximate the function f(x) over the continuous interval [a, b] given only the
data pairs (z1, f(z1)), (z2, f(22)),. .., (zN, f(xN)) associated with our discretization; we may think
of these N pairs of data as a “look-up table.” We shall pursue a particular kind of approximation
known as interpolation. In general, an interpolation scheme is characterized by two ingredients:
the “what” — the functional form of the interpolant; the “where” — the (interpolation) points
at which we shall require (Zf)(x) = f(x). This latter condition is the distinguishing feature of
interpolation: our approximation (Zf)(z) must “go through” f(x) — agree with the exact function
f(z) — at prescribed values of the independent variable. Note that we must choose an appropriate
combination of “what” and “where” such that a unique interpolant can be found.

We now construct the piecewise-constant, left-endpoint interpolant — a particular choice of
interpolation scheme. We first focus our attention on interpolation of the data over a single segment
S;. In particular, let us say that the input value of interest — the value of x at which we wish
to approximate y = f(x) — resides in interval S; (for some 7). We now choose for the “what” a
constant function, and for the “where” the left endpoint of 5;, as depicted in Figure 2; the latter
demands that (Zf)(z;) = f(x;), but from the former, Zf is constant, and hence (Zf)(z) = f(x;)

for all x in S;. We thus arrive at a very simple expression for our interpolant over 5;,
(Zf)(x) = f(z;) forall zinS;. (1)

Note that, a constant function (the “what”) has one degree of freedom, and the agreement between
Zf and f at the left-endpoint (the “where”) constitutes a single condition, or equation; hence we
have one equation in one unknown and we may readily find the unique interpolant.

Although we have focused on a particular segment S;, our relation (1) is valid for any segment S;,
i=1,...,N—1, and we can thus now estimate f(z) anywhere on the interval [a, b]: given any x in
[a, b], we first identify the interval in which x resides, S;« (note that * depends on x); we then apply
our formula (1) for x; = x;« to obtain (Zf)(x) = f(z;=). We depict the interpolant over the entire
interval in Figure 3, from which we now understand the genesis of the name “piecewise-constant,
left-endpoint”: the “piecewise-constant” refers to the “what” (now from a global formulation), and
the “left-endpoint” refers to the “where” (in reference to the underlying discretization).

Finally, we may demonstrate that our more mathematical construction here is equivalent to the
simple description in words provided at the outset of this section. It suffices to note that, for any
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Figure 2: Illustration of piecewise-constant left-endpoint interpolation over the segment S;.
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Figure 3: Illustration of the piecewise-constant left-endpoint interpolant over the full interval [a =
0, b=1].

point x in Sj+ = [+, xi+4+1], the closest-but-smaller input in our “look-up table” is x;+, and the
output in our look-up table associated to ;« is f(x;+) — precisely as reproduced by (1).

CYAWTP 1. Evaluate the speed of sound by piecewise-constant, left-endpoint interpolation of
the (temperature, speed of sound) data of Table 1 at temperatures of 257K and 291K, respectively.

We now wish to understand how well our interpolant Zf approximates f. This is an exercise
in error analysis. We again focus our attention to a segment .S;. We first recall that, from the
fundamental theorem of calculus,

presuming that the derivative f’(£) exists (in an appropriate sense). We can then readily show
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that, for any z in S;,

[f(@) = (Zf)(@)] = |f(x) = f(xi)] (by the definition of the interpolant)

= | / f(&)dg| (fundamental theorem of calculus)

< [ I

<maX|f )\/ d¢

£€S;

Tit1
< hlén%x |f(€)] (by the definition of h = / dg).
€55 z;

We conclude that the local interpolation error, e;, over the interval S; satisfies
e; = max|f(z) — (Zf)(z)| < hmax|f'(z)]. (2)
xesi .Z’Esl'

(We recall that “z € Z” means that the variable z is in the set Z. We also recall that “max,cz G(2)”
for some variable z and any function G(z) asks us to find the maximum value of G(z) for all values
of z in the set Z. For example, max,eg, |f/(z)| is the maximum of the absolute value of f’ over
all values of x in the segment S;.) Note that the interpolation error depends on two factors. The
first is the discretization resolution parameter h: the shorter the segment, the better the estimate.
The second is the first derivative of the underlying function f: the slower the rate of the change of
the function, the better the estimate. These results are consistent with our intuition suggested by
a Taylor series expansion. The error bound (2) is also sharp: there exists a function for which the
bound statement holds with equality.

We now study the behavior of the (global) interpolation error over the entire interval [a, b]. We
appeal to the local interpolation error bound to obtain

emax = max |f(z) — (If) ()] =  max  max|[f(z)—(If)(z)| <  max e

€la,b i€{l,..,.N—1} z€S; ie{1,...,.N—1}

pr— < ]
ey, gl F (@) < b ma | ()]

(We recall that {1,..., N — 1} refers to the set of integers from 1 to N — 1.) More concisely,

emax < Ch for C= m[a:}c)} If'(z)]. (3)
T€Ela

The global error bound consists again of two contributions: the discretization resolution parameter
h; a constant C' which characterizes the underlying function f — in the case of piecewise-constant,
left-endpoint interpolation, C' depends on the first derivative of f. Note that C is independent of
h.

Given some z, we may find ¢* such that = resides in S;+. We may then bound |f(z) — (Zf)(z)]
by e+ of (2) or emax of (3). In general, the local bound of e;+ will be sharper — closer to the true
error — than the global bound, since the local bound reflects the derivative in the vicinity of x, and
not the worst case over the entire interval [a,b]. These error bounds can serve several purposes,
often quite pragmatic, as we will describe shortly.



CYAWTP 2. Laplace first derived — correcting Newton — that (for air) at temperature x the
speed of sound can be very accurately predicted by f(x) = /yRx; here v = 1.4 is the ratio of specific
heats, R = 287J/(kg-K) is the specific gas constant of air, and x is the temperature in Kelvins.
It follows that f/'(z) = v/yR/(24/x). On the basis of this derivative information (admittedly not
often available in practice, since f is typically not known), evaluate the local error bound (2)
for temperatures 257K and 291K, respectively, and the global error bound (3), associated with
piecewise-constant, left-endpoint interpolation of the data of Table 1 over the interval [230, 310].

CYAWTP 3. Find a function f (preferably not the constant function) such that the maximum
difference between f(x) and (Zf)(x) over an interval [0,1] is given precisely by the maximum of
|f'(x)] over [0,1] — as predicted by our bound of (3). (Recall that because such a function exists,
we say the bound (3) is sharp.)

Numerical Experiment 4. Invoke the interpolation GUI for the function f(x) = sin(z) and
piecewise-constant, left-endpoint interpolation: visualize the geometric interpretation of the local
interpolation error; confirm empirically the decrease of the global interpolation error as h decreases.

Numerical Experiment 5. Invoke the interpolation GUI for the function obtained in CYAWTP 3
and confirm empirically that the error bound holds with equality.

We now generalize the result of the error analysis. Very often in the analysis of numerical
approximations we encounter error bounds of the form

emax < Ch?  for C independent of h.

We say a scheme is convergent if epax — 0 as h — 0; for the form above, convergence is achieved
for any p > 0. Convergence is an attractive property because it tells us that, as h — 0, the scheme
can eventually replicate the exact solution to any desired accuracy. (Actually, not quite true: we
discuss the issue of finite-precision arithmetic and round-off errors in a subsequent nutshell.) The
convergence rate, which tells us how fast the scheme converges in the limit of h — 0, is reflected in
the order p. If p = 1, we say the scheme is first-order accurate; for h sufficiently small, reduction of
h by a factor of two will reduce the error by a factor of two. The piecewise-constant, left-endpoint
interpolation is an example of a first-order scheme. If p = 2, we say the scheme is second-order
accurate; for h sufficiently small, reduction of h by a factor of two will reduce the error by a factor
of four. We shall shortly introduce an example of a second-order scheme.

We may also empirically characterize the convergence behavior of schemes. For instance, Fig-
ure 4 shows the convergence behavior of the piecewise-constant, left-endpoint interpolant for the
function f(x) = sin(107z) over = € [a = 0,b = 1]. We present two results, both plotted on a log-log
scale. The first result is the logarithmic convergence curve, which is the (non-straight) curve of
the logarithm of the error, log;g(emax), plotted against the logarithm of the number of segments,
logg(1/h). The second result is the logarithmic convergence asymptote, which is the (straight-line)
asymptote of the logarithmic convergence curve for h tends to zero (hence 1/h = N — 1 tends to
infinity). Recall that we say a function A(z) asymptotes to a function B(z) as z — s if the ratio
of the two functions approaches unity: lim,_, % — 1; in our context, s is typically either 0 or

oo. We write A(z) asymptotes to B(z) as z — s more succinctly as A(z) ~ B(z) as z — s. Our
logarithmic convergence asymptote is of the form

log g (emax) ~ 10g19(Casymp) — p X logg(1/h) as h —0;



here, log;((Casymp) is the intercept of the logarithmic convergence asymptote (typically Cagymp = C
of our bound), p is the slope of the logarithmic convergence asymptote (and the order of the scheme,
under certain smoothness assumptions), and log;(1/h) is the logarithm of the number of segments.
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Figure 4: Convergence of the piecewise-constant, left-endpoint interpolation for f(x) = sin(107x)
over the interval z € [0, 1].

CYAWTP 6. Consider functions

Which functions are asymptotic to 22 as z — 0o?

The length of the segments, h, is known as the discretization parameter: from our assumption
of equispaced points, the value of h (= (b — a)/N, for some integer V) suffices to specify the
segment endpoints and the segments — in short, the complete discretization. We say, when we
decrease h, that we refine the discretization (or grid). In practice — to obtain the desired accuracy,
or to construct our logarithmic convergence curve — we consider a particular refinement strategy.
For example, the Interpolation GUI implements a “doubling” uniform refinement strategy (for the
interval [a,b] = [0,1]): we choose the discretization parameters as h = 1, h = 1/2, h = (1/2)?,
h = (1/2)3,... such that at each successive refinement we double the number of segments. A
sequence of discretizations in which h is decreased only slightly from level to level, h = 1,h =
1/2,h =1/3,h =1/4,h = 1/5,..., is not of much interest: the decrease in the error from level to
level will be very modest.

We present in Figure 4 the logarithmic convergence curve and logarithmic convergence asymp-
tote for piecewise-constant, left-endpoint interpolation of f(x) = sin(107x). (Although we draw a
suggestive curve, we only calculate ey, for values of the discretization parameter h corresponding
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to a doubling uniform refinement strategy: h = 1, h =1/2, h = (1/2)?, . . ..) Note that the intercept
of the logarithmic convergence asymptote is 1ogyo(Casymp) = 10g10(C) = logyo(max,cpo 17 [f'(2)]) =
log(107). We observe that there are two qualitatively different regimes in the convergence behav-
ior: the pre-asymptotic regime in which the error does not behave in a predictable manner with h,
and indeed does not decrease in any systematic fashion; the asymptotic regime in which the con-
vergence curve closely tracks the convergence asymptote — and realizes the predicted convergence
rate of p = 1 (as expected, since sin(107z) is smooth, even if wiggly relative to the length of the
interval [a,b]). The resolution requirement — the value of the discretization parameter h required
to enter the asymptotic regime of convergence — is problem dependent.

CYAWTP 7. Sketch the logarithmic convergence curve, log;o(emax) Vs logio(1/h), and the cor-
responding logarithmic convergence asymptote associated with piecewise-constant, left-endpoint
interpolation of (a) the function fi(z) = sin(rz), and (b) the function fo(z) = sin(107z), in both
cases over the interval [0,1]. How are the slopes of the two logarithmic convergence asymptotes

related? How are the intercepts logg(Casymp) of the two logarithmic convergence asymptotes re-
lated?

Numerical Experiment 8. Invoke the Interpolation GUI to confirm your sketches of CYAWTP 7.

We now consider the cost associated with piecewise-constant left-endpoint interpolation. To-
wards this end, we introduce the notion of floating point operations. A floating point operation
is an arithmetic operation: an addition, subtraction, multiplication, or division. We abbreviate
the term floating point operation as FLOP (FLoating-point OPeration) and in plural as FLOPs
(FLoating-point OPerations). (Note the lowercase s; with a capital final letter, FLOPS refers to the
speed of a computer as measured by the number of FLOPs which may be performed in a second.)
We characterize the cost of a particular computational task by the operation count: the number of
floating point operations — FLOPs — required to perform the necessary operations-2-As a very
simple example, the computation of 2 + 3 x 4 requires 2 FLOPs: a multiplication and an addition.

Most often we are much less concerned by factors of two or three and much more concerned
with the dependence of the operation count on our discretization parameter, h, or equivalently the
number of degrees of freedom, N. For that reason, operation counts are often provided in big-O
notation. We say “Task A requires O(g(K))” operations if the operation count associated with
Task A, as measured in FLOPs, is bounded by cg(K) as K — oo for some finite ¢ independent of K.
By this construction, we obtain, for example, O(K?+ K) = O(K?), O(100K2+0.01K?) = O(K?),
O(10K® + K!) = O(K!) (where ! denotes factorial). The big-O notation is convenient for the
characterization of the predominant cost associated with a particular task as the problem size —
measured by K (in our case, N) — grows. Note big-O is not unique, in that 10K? is O(10K?2) but
also O(K?) and even O(5K?); the convention is to choose unity as the multiplicative factor.

CYAWTP 9. Given a set of K numbers {z1,...,zx}, consider the computation of Eszl(m% +x).
What is the precise operation count, measured in FLOPs, as a function of K7 What is the operation
count expressed in big-O notation as K — oco?

In practice, the number of floating point operations will not directly predict “wall clock” time — the time
to perform the computations. There are various pieces of overhead, and in particular the process by which data
(numbers) are brought into the arithmetic units — access to storage — plays a large role. Modern computer
architectures mitigate many of the impediments to rapid computation, for example through a hierarchy of memory.



In the context of interpolation, we are interested in understanding how the cost varies with the
number of data points N. We consider two different types of cost. First is the Offline cost, which is
associated with the construction of our data (x1, f(x1)),...,(xn, f(zn)). To construct this look-up
table we must evaluate the function f for NV different input values, x1,...,xxN; each evaluation —
which might entail collecting experimental data or performing a large numerical simulation — can
be very expensive. This Offline cost is O(N).

Second is the Online cost, which is associated with the construction of the interpolation estimate
based on the look-up table constructed in the Offline stage. Given x, we must first locate the
closest-but-smaller input value in our table, x;+. If the values of the input are equispaced, h; = h,
i =1,...,N — 1, then i* = floor((z — a)/h) + 1, a calculation which we can perform in O(1)
operations; here floor() rounds down the argument to the nearest integer. If the data is not
equispaced, then we can find ¢* by binary search in O(log(NN)) operations (or, by more brute force
approaches, in O(N)). Once we identify z;«, the look-up of f(x;+) takes O(1) operations. Thus the
overall Online cost for piecewise-constant, left-endpoint interpolation is O(1) for equispaced data
and O(log(N)) (or O(N), brute force) for variably spaced data.

We close this section with two comments, one philosophical, the other pragmatic. From the
philosophical side, we note the crucial role that discretization plays in the success of our interpo-
lation approach: the computational cost is small because once we identify ¢* the function is very
simple — constant — over S;«; but we achieve reasonable accuracy despite this simple represen-
tation precisely thanks to discretization — we enlist a different constant over each segment. The
beneficial effect of the latter is reflected in the convergence of our approximation as h tends to
zero. From the pragmatic side, we observe that the error is inversely proportional to the number
of entries in our look-up table, N. In order to reduce N we might consider different “whats,” in
particular higher-order schemes, over each segment; an example is discussed in the next section.
But we can also, for the same piecewise constant “what,” consider segments of different lengths —
smaller h; for the segments S; over which f’(z) is larger, as suggested by the local interpolation
error bound (2). Of course, to effect this strategy, we must be able to estimate f’(z); numerical
differentiation is the topic of a subsequent nutshell.

4 Piecewise-Linear Interpolation

We now consider arguably the most ubiquitous interpolation scheme: piecewise-linear interpolation.
As the name suggests, this interpolant is linear over each segment and is hence piecewise-linear over
the entire interval [a, b].

To construct the interpolant, we again start with the (N — 1)-segment discretization as shown
in Figure 1. We first focus our attention on the interpolation of data over a single segment S;
delineated by the endpoints x; and z;11, as shown in Figure 5. We construct our approximation in
terms of (z;, f(z;)) and f(x;y1, f(zi+1)) — the available data over S; — which furthermore satisfies
the following two conditions: 1) “what”: the approximation is linear over the segment S;, and 2)
“where”: the approximation matches the exact function at the two endpoints,

(Zf)(@i) = f(z;) and (Zf)(zit1) = f(zit1) - (4)

These “what” and “where” conditions define a unique interpolant: two points determine a straight
line; we depict the resulting interpolant in Figure 5. We can express the interpolant in functional



form as

f(@iv1) — f(xi)

Tit+1 — X5

(Zf) (@) = flzi) +

(x —x;) for xin S; =[x, Tit1] ; (5)

clearly (Zf)(x) is linear over the segment S;, and furthermore Zf satisfies (4). We recognize that
f(x;) is the left-endpoint of the interpolant and (f(z;+1) — f(x;))/(zi+1 — x;) is the slope of the
interpolant.

(xig1, f(miv1))

| Si |

X Tit1
Figure 5: Illustration of piecewise-linear interpolation over the segment S;.

We can now directly extend our result to the full interval: Given any z in [a, b], we first identify
the interval in which x resides, S;+ (as before, i* of course depends on z); we then apply our
formula (5) for x; = x;+ and x; 41 = x41. We depict the interpolant over the entire interval
in Figure 6. As a concrete example, we apply piecewise-linear interpolation to predict the speed
of sound as a function of temperature from the look-up table of Table 1; we consider x = 248K
as the temperature at which we wish to estimate the speed of sound. We identify i* = 2 since
i =240 < x < x4+41 = 250; we then apply (5) for i = i* to obtain (Zf)(248) = f(240)+ (f(250) —
£(240)) /(250 — 240) - (248 — 240) = 310.5 + (316.9 — 310.5) /(250 — 240) - (248 — 240) = 315.6 (m/s).
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Figure 6: Illustration of the piecewise-linear interpolant over the full interval [a = 0,b = 1].

CYAWTP 10. Evaluate the speed of sound by piecewise-linear interpolation of the (temperature,
speed of sound) data of Table 1 at temperatures of 257K and 291K, respectively.

We may analyze the error associated with our piecewise-linear approximation Zf of f. In
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particular, we may obtain bounds (see Appendix A) for the local interpolation error,

e < " max |f7(a) (6)
v = 8 TES; ’
as well as for the global interpolation error,
Emax < —hQ max |f"(x)|; (7)
max =g z€[a,b] ’

theses bounds are sharp. We make two observations. First, the convergence rate for the piecewise-
linear interpolation is p = 2 — the method is second-order accurate. Thus, we expect the piecewise-
linear interpolant to converge more rapidly with h than the piecewise-constant, left-endpoint in-
terpolant for sufficiently small h. Second, the error bound depends on the second derivative, f";
in contrast, for piecewise-constant, left-endpoint interpolation the error bound depends on the first
deriwvative, f'. If f” does not exist, the bound (7) may not be valid.

Note that interpolation only “works” because of smoothness: it is the property that the value of
a function at one input point is related to the value of a function at a neighboring input point which
permits us to accurately estimate the behavior of the function over the entire interval [a, b] based
only on limited data — (zj, f(z;)), ¢ = 1,..., N. Furthermore, the more smoothness available,
the more we can predict from just a small snippet of genetic material, either function values on
some small interval, or function values at a few select points. This argument also correctly suggests
that interpolation is not a good strategy in the presence of noisy data — f(x) contaminated by
measurement error, say; we shall consider (non-interpolatory) approximation schemes for noisy
data in a subsequent nutshell.

CYAWTP 11. Reconsider CYAWTP 2 but now for the case of piecewise-linear interpolation:
evaluate the local error bound (6) for temperatures 257K and 291K, respectively, and the global

error bound (7) associated with piecewise-linear interpolation of the data of Table 1 over the interval
[230, 310].

CYAWTP 12. Which of the following functions f(x) can be exactly represented by a piecewise-
linear interpolant (such that Zf(z) — f(x) = 0 for all z € [0,1]): f(x) = constant; f(z) a linear
polynomial in z; f(z) a quadratic polynomial in z; f(x) a sinusoidal function of 7

CYAWTP 13. Sketch the logarithmic convergence curve and the logarithmic convergence asymp-
tote associated with interpolation of f(z) = sin(10mz) over the interval [0, 1] for (a) piecewise-
constant, left-endpoint interpolation, and (b) piecewise-linear interpolation. How are the slopes of
the two logarithmic convergence asymptotes related? How are the intercepts log;o(Casymp) of the
two logarithmic convergence asymptotes related?

Numerical Experiment 14. Invoke the Interpolation GUI for f(x) = sin(107x) to confirm your
predictions of CYAWTP 13.

CYAWTP 15. Sketch the logarithmic convergence curve and logarithmic convergence asymptote
associated with interpolation of the discontinuous function

£ )_{0, 0<z<1/3

= (8)
1, 1/3<z<1,
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for (a) piecewise-constant, left-endpoint interpolation, and (b) piecewise-linear interpolation, re-
spectively. Consider a sequence of discretizations corresponding to a “doubling” uniform refinement
strategy h = 1, h = 1/2, h = (1/2)%, h = (1/2)3, .... Note that the jump in the function at x = 1/3
will always reside inside a segment and not at a segment endpoint. Indicate the convergence rate
— the negative of the slope of the logarithmic convergence asymptote — for each case.

Numerical Experiment 16. Invoke the interpolation GUI for the discontinuous function (8) and
confirm empirically your predictions of CYAWTP 15. Recall that the GUI considers a “doubling”
uniform refinement strategy for h = 1, h = 1/2, h = (1/2)2, h = (1/2)3, ..., such that the jump in
the function at = 1/3 will always reside inside a segment and not at a segment endpoint.

We briefly comment on the cost of piecewise-linear interpolation. In the Offline stage, the
interpolation requires preparation of N data pairs (z1, f(z1)),. .., (zn, f(zN)); the cost is O(N).
In the Online stage, we first identify the segment S;» = [+, z;=+1] to which x belongs; as before,
this requires O(1) operations for a constant h and O(log N) (or more simply, O(N)) operations for
variable h. We then look up r = f(x;+) and s = f(z;+41) in O(1) operations and compute

s—r
(Zf)(x)=r+ P— (x — @4+)
in 6 FLOPs.

We note that the cost of piecewise-linear interpolation is comparable to the cost of piecewise-
constant, left-endpoint interpolation. The Offline cost for both methods is O(N); the Online cost
for both methods is O(1) for a constant A and O(log(N)) for variable h. However, for the same
h (and hence N), the piecewise-linear interpolation is much more accurate than the piecewise-
constant, left-endpoint interpolation, at least in the asymptotic regime: the former is second-order
accurate, whereas the latter is first-order accurate. We can thus conclude that the piecewise-
linear interpolation is more efficient than piecewise-constant, left-endpoint interpolation in terms
of accuracy obtained for prescribed computational cost. It is for this reason — no pain, but gain
— that piecewise-linear interpolation is perhaps the most commonly invoked data-interpolation
scheme.

5 A Point-Based Formulation

In the previous sections, we have viewed interpolation as a global approximation problem over a
finite interval [a,b] which we decompose into segments S;, i = 1,..., N — 1, the extent h; of each
of which decreases as we refine our discretization. Alternatively, we may view interpolation as a
local approximation problem, in which given some few pairs (z, f(x)), we interpolate f(z) over
[Tmin, Tmax); here Ty is the smallest value of = for which f(z) is provided, and xpyax is the largest
value of = for which f(x) is provided.

As a first example, let us say we are given T and Ts for 1 < Ty and h = Ty — Z1. We can then
construct, say, a piecewise-constant, left-endpoint interpolant over [Zmin = Z1, Tmax = T2] as

(If)<x) = f(fl)a HANS [xminaxmax]-
Similarly, we can construct a piecewise-linear interpolant over [Zpin = Z1, Tmax = T2| as

f(x2) — f(Z1)

(@) = fla) + 22

('T - jl)’ HARS [l‘mina :Emax]-
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But we can now proceed further.

Let us consider three points T1, T2, and T3 where T; < ZTo < I3; for simplicity, we assume
the points are equispaced such that h = 9 — 1 = T3 — T3. We can now construct a quadratic
interpolant over [Tmin = Z1, Tmax = T3] as

EN@) = gl @) - 2w — o) = 55 @)@ - 20w - 23)
+ Tiﬂf(i‘?))(x - jl)(:n - j2)7 T e [xminyxmax]-

Note we retain the two ingredients of interpolation: the “what” is a quadratic polynomial; the
“where” is the three equally spaced points, Z1, To, T3 — it is easy to verify that (Zf)(z;) = f(z;),
i = 1,2,3. Our interpolant is unique since a quadratic polynomial can be expressed in terms of
three degrees of freedom and the interpolation condition (Zf)(Z;) = f(Z;), i = 1,2, 3, imposes three
constraints: three (independent) linear equations in three unknowns.

There are many applications of the point-based formulation, in particular because there is
no need for a underlying global discretization over the full domain. In a later nutshell, we will
take advantage of this point-based formulation of interpolation to develop numerical differentiation
formulas.

6 Perspectives

We have only here provided a first look at the topic of numerical interpolation. A more in-depth
study may be found in Math, Numerics, and Programming (for Mechanical Engineers), M Yano,
JD Penn, G Konidaris, and AT Patera, available on MIT OpenCourseWare, which adopts similar
notation to these nutshells and hence can serve as a companion reference. For an even more compre-
hensive view from both the computational and theoretical perspectives we recommend Numerical
Mathematics, A Quarteroni, R Sacco, F Saleri, Springer, 2000.

Of the many further topics of interest, perhaps the most important is the treatment of in-
terpolation in higher dimensions. In this nutshell we consider interpolation of functions over an
interval — functions of a single independent variable defined over a one-dimensional domain. How
might we construct an interpolant if the domain is not an interval, but rather some region in two
dimensions (two independent variables) or even three dimensions (three independent variables)?
For instance, suppose we are given a table of the speed of sound of a dense gas for several values of
the gas temperature and the gas pressure; how might we approximate the speed of sound for any
given temperature and pressure? In fact, the interpolation methods we present here do extend to
higher dimensions, however, the presentation and analysis is somewhat more involved, and more
importantly convergence can be slow in very high dimensions. The latter is known as the curse of
dimensionality.
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Appendix A Derivation of Error Bound for Piecewise-Linear In-
terpolation

We first recall the mean-value theorem: if ¢ is continuously differentiable on [c, d], then there exists
a point z* € [e,d] such that ¢'(z*) = (g(d) — g(¢))/(d — ¢). We then appeal to the fundamental
theorem of calculus and the mean-value theorem:

flz)=(Zf)(z)= / (f =Zf)(t)dt (fundamental theorem of calculus)

T t

= / / (f —Zf)"(s)dsdt (mean-value theorem)
vt

= / / f"(s)dsdt ((Zf)" = 0 since Zf is linear)
' x t

< " ds dt

< max| f (”U)'/xi /s
2

< & - max | (z)] (integration over the s-t triangle);

TES;

here, the second step follows from first invoking the mean-value theorem — there exists a point x* €
[3; i41] such that f'(z*) = (f (#i41) — f(2i))/(@it1 — i) = (Zf)'(2*) and hence (f —Zf)(z*) =0
— and then invoking the fundamental theorem of calculus with the limits z* and {. We conclude
that the local interpolation error is bounded from above by e; < (h%/2) max,ecs, |f"(x)|.

We can in fact obtain a tighter bound through a more careful analysis (see Math, Numerics,
and Programming (for Mechanical Engineers), M Yano, JD Penn, G Konidaris, and AT Patera).
We state here the result for the local interpolation error,

h2
i < g max|'(2)].

as well as for the global interpolation error,

2
€max < - Max ’f//(xﬂ )
z€[a,b)

theses bounds are sharp.
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