
Problem Set 4 2.086 Spring 2012  

Released: Friday, 6 April  
Due: Tuesday, 24 April, at 2:30 PM, by hardcopy at the beginning of class.  

Please also upload to Stellar any Matlab function/script files you are asked to supply by hardcopy  
in your problem set document.  

Recall that this problem set is worth twice as many points as the other problem sets.  

Introduction 

Although mobile robots operating in flat, indoor environments can often perform quite well without 
any suspension, in uneven terrain a well-designed suspension can be critical. 

An actual robot suspension and its simplified model are shown in Figure 1. The rear and 
front springs with spring rates k1 and k2 serve to decouple the rest of the robot chassis from the 
(approximated as massless) wheels, allowing the chassis and any attached instrumentation to “float” 
relatively unperturbed while the wheels remain free to follow the terrain and maintain traction. 
The rear and front dampers with damping coefficients c1 and c2 (shown here inside the springs) 
dissipate energy to prevent excessive chassis displacements (e.g., from excitation of a resonant 
mode) and oscillations. Note that in our “half-robot” model, k1 accounts for the combined stiffness 
of both rear wheels, and k2 accounts for the combined stiffness of both front wheels. Similarly, c1 
and c2 account for the combined damping coefficients of both rear wheels and both front wheels, 
respectively. 
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(a) Actual robot suspension (b) Robot suspension model 

Figure 1: Mobile robot suspension 
In this assignment, we are particularly concerned with the possibility of either the front or rear 

wheels losing contact with the ground, the consequences of which — loss of control and a potentially 
harsh landing — we wish to avoid. 

To aid our understanding of robot suspensions and, in particular, to understand the conditions 
resulting in loss of contact, we wish to develop a simulation based on the simple model of Figure 1(b). 
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Specifically, we wish to simulate the transient (time) response of the robot-with-suspension traveling 
at some constant velocity v over a surface with profile H(x), the height of the ground as a function 
of x, and to check if loss of contact occurs. To do so, we must integrate the differential equations 
of motion for the system. 

First, we determine the motion at the rear and front wheels in order to calculate the normal 
forces N1 and N2. Because we assume constant velocity v, we can determine the position in x of 
the center of mass at any time t (we assume X(t = 0) = 0) as 

X = vt . (1) 

Given the current state w = [Y, Ẏ , θ, θ̇]T, we can then calculate the positions and velocities in both 
x and y at the rear and front wheels (assuming θ is small) as 

X1 = X − L1, (Ẋ1 = v) , 

X2 = X + L2, (Ẋ2 = v) , 
Y1 = Y − L1θ , 

(2)
˙ ˙ ˙Y1 = Y − L1θ , 
Y2 = Y + L2θ , 
˙ ˙ ˙Y2 = Y + L2θ , 

where L1 and L2 are the distances to the system’s center of mass from the rear and front wheels. 
Here subscript 1 and subscript 2 refer to the rear and front wheels, respectively. Note that we define 
Y = 0 as the height of the robot’s center of mass with both wheels in contact with flat ground and 
both springs at their unstretched and uncompressed lengths, i.e., when N1 = N2 = 0. 

Next, we determine the heights of the ground at the rear and front contact points as 

h1 = H(X1) , 
(3) 

h2 = H(X2) . 

Similarly, the rates of change of the ground height at the rear and front are given by 

dh1 d˙= h1 = v H(X1) ,
dt dx 

(4) 
dh2 d˙= h2 = v H(X2) . 
dt dx 

dH dX 
Note that we must multiply the spatial derivatives 

dx 
by v = 

dt 
to find the desired temporal 

derivatives. 

While the wheels are in contact with the ground, we can determine (assuming massless wheels) 
the normal forces at the rear and front from the constitutive equations for the springs and dampers 
as 

N1 = k1(h1 − Y1) + c1(ḣ1 − Ẏ1) , 
(5) 

N2 = k2(h2 − Y2) + c2(ḣ2 − Ẏ2) . 
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If at any time N1 or N2 is calculated from Equations (5) to be less than or equal to zero, we can 
conclude that the respective wheel has lost contact with the ground. In this problem set we focus 
on the conditions for “loss of contact” and thus we will terminate the simulation once contact is 
lost.1 

Finally, we can determine the rates of change of the state from the linearized (cos θ ≈ 1, 
sin θ ≈ θ) equations of motion for the robot-with-suspension, given by Newton-Euler as 

N1 + N2¨ Y = −g + , 
m 

(6) 
N2L2 − N1L1¨ θ = ,

Izz 

where m is the mass of the robot, and Izz is the moment of inertia of the robot about an axis 
parallel to the Z-axis and passing through the robot’s center of mass. 

We wish to derive an exact, analytical solution to a simplified version of Equations (6) that we 
˙can later use to verify our numerically approximated results. For the special case of h1 = h1 = h2 = 

ḣ2 = 0 (i.e., flat ground) and (as in this assignment) k1 = k2 = k, c1 = c2 = c, and L1 = L2 = L, 
the equations of motion have the solution   

−βY t
βY(Y0 − Yeq) + Ẏ0

Y (t) = Yeq + e (Y0 − Yeq) cos ωdYt + sin ωdYt ,
ωdY   (7) 

−βθ t
βθ(θ0 − θeq) + θ̇0

θ(t) = θeq + e (θ0 − θeq) cos ωdθt + sin ωdθt ,
ωdθ 

where  
βY = 

c
, ω2 =

2k
, ωdY = ω2 − β2 ,0Y 0Y Ym m  cL2 2kL2 

βθ = , ω2 = , ωdθ = ω2 − β2 ,0θ 0θ θIzz Izz 

are damping and natural frequency parameters and 

−mg
Yeq = ,

2k (8) 
θeq = 0 , 

is the equilibrium position. This exact solution corresponds to a stationary robot (v = 0) far 
from the bump (e.g., X = 0) perturbed from equilibrium with initial condition [Y0, Ẏ0, θ0, θ̇0] 
( ≡ [Yeq, 0, θeq, 0]T) and then released. = weq 

1Note that once contact is lost the respective normal force will continue to be zero until Y1 ≤ h1 (in the case of 
the rear wheel having lost contact) or Y2 ≤ h2 (in the case of the front wheel having lost contact), at which time 
the respective equation from Equations (5) can once again be used to determine the respective normal force. This 
switching on and off of the normal forces for contact and non-contact will lead to a nonlinear differential equation. 
Although the methods we develop in Unit IV can be applied to this nonlinear differential equation, we do not ask 
you to consider the “airborne” case in this problem set. 
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Instructions 

Please download the file Pset_4_datafiles.zip containing spring_data.mat, Hgauss.m, rk4sb.mat, 
and animate_robot.m from Stellar. The appendix describes how to use the files. 

Questions 

Part I: Regression 

1. (20 pts) We assume that the robot suspension springs follow a force-displacement (F -δ) model 
of the form   2δ δ 

F = β0 + β1 + β2 , (9)
δmax δmax

where δmax is a maximum displacement. Note that F , and hence β0, β1, and β2, all have units 
of Newtons, and δ and δmax have units of meters. 

We next conduct an experiment in which we collect data for the force in a single spring from 
the suspension for several values of δ/δmax, as shown in Figure 2 in the appendix. We then 
multiply the measured force by two (this scaling has already been performed for you in the 
spring_data.mat data) since each spring in our model represents the two (left, right) springs 
in parallel. 

We now ask you to perform a least squares regression on the data in spring_data.mat for 
the model given by Equation (9); see the appendix for a description of the spring_data.mat 
file. Note that k1(= k2, since front and rear springs are the same for our robot) is given by 
β̂1/δmax, where for our experiments δmax = 0.0165 meters. You may assume that the model 
Equation (9) is bias-free. 

(i) Provide in a single plot (δ/δmax on the horizontal axis, force on the vertical axis) both 
the experimental data and your (best-fit) model. 

ˆ(ii) Provide your least-squares/regression estimate for the spring constant k1, β1/δmax. 
and βtrue(iii) Provide 95% confidence-level joint confidence intervals for βtrue .0 2 

and βtrue(iv) Indicate why, based on the confidence intervals for βtrue 
2 , you can justify a 0 

standard linear spring model for the robot suspension springs. 

Part II: Crank-Nicolson Approximation 

2. (20 pts) Convert the equations of motion Equations (6) to linear state space form ( ẇ = Aw+F 
from Equation (19.25) of the text) for state w = Y , θ, θ̇]T[Y, ˙ by using Equations (1)–(5) to 
rewrite Equations (6) in terms of the elements of w; note F should not depend on w. 

(i) Identify your 4 × 4 A matrix (in terms of the symbols provided: g, m, Izz, L1, L2, c1, 
c2, k1, k2, H(X)). 

(ii) Identify your 4 × 1 F vector (in terms of the symbols provided: g, m, Izz, L1, L2, c1, c2, 
k1, k2, H(X)). 

Note you should not assume here that k1 = k2, c1 = c2, L1 = L2. 
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3. (20 pts) Now. . .  

(i) Evaluate and provide the matrix A in your state space formulation of Question 2 in 
Matlab for the mobile robot parameters given in Table 1 of the appendix and the value 

ˆof k1 = k2(= β1/δmax) found in Question 1. Note your result should be in terms of 
numerical values for the 16 entries of A. (Please make sure to clearly indicate which 
values are associated with which indices of A.) 

(ii) Find the eigenvalues λk, k = 1, 2, 3, 4, of A by using the Matlab built-in function 
eig(). Note your answer should be four complex floating point numbers. 

4. (20 pts) 

(i) Provide a plot on the Crank-Nicolson absolute stability diagram (Figure 19.12(a) of the 
text) with λkΔt, k = 1, 2, 3, 4, indicated for each of the three cases Δt1 = 0.2 s, Δt2 = 0.1 
s, and Δt3 = 0.001 s. Note you should provide a single plot with all three cases (each 
case corresponding to a different Δt) on the one plot but with a different symbol for (the 
four λkΔt points associated with) each case. 

(ii) Which Δt is/are absolutely stable for Crank-Nicolson? Clearly indicate for each Δt 
either stable or unstable. 

5. (20 pts) Based on the A and F matrices found in Question 2, implement a Crank-Nicolson 
integrator script and run it for initial state w0 = [0, 0, 0.1, 0]T, velocity v = 0 (and hence 
X(t) = 0 for all t), final time tfinal = 2 s, and time steps Δt = 0.001 s (first run) and 
Δt = 0.0005 s (second run); note “s” refers to seconds. In order to fully test your script 
you should use the Hgauss() function provided (described in the appendix) as your H(x) 
in Equations (3) and (4) (even though Hgauss(0) will return an extremely small number, 
effectively zero). 

(i) Please copy-paste your Matlab Crank-Nicolson script into your problem set (and also 
upload to stellar). 

(ii) Provide a 2 × 3 table: tabulate (in the three columns) θ(tfinal), θ̃(tfinal), and |θ(tfinal) − 
θ̃(tfinal)| for (in the two rows) Δt = 0.001 s and Δt = 0.0005 s. Make sure to clearly 
label the rows and columns of the table. Note that θ is the exact analytical solution 
from Equations (7) and θ̃ refers to your Crank-Nicolson approximation. 

(iii) Does your numerical approximation change appreciably when you halve Δt? Does the 
error in your numerical approximation decrease by the factor you expect when you halve 
Δt? 

6. (20 pts) Run your Crank-Nicolson code again, but now for initial state w0 = weq ≡ [Yeq, 0, θeq, 0]T 

from Equations (8) and non-zero v. You may choose Δt = 0.001 s except in part (iii). 

Test four different cases: v = 0.25, v = 1.2, v = 5, and v = 10. 

(i) Indicate, for tfinal = 1.25/v (you may use ceil of 1.25/v), which velocities result in a loss 
of contact. Note you may continue your simulations beyond the loss of contact point (or 
you may terminate the simulation upon loss of contact), however the calculations are 
not physically relevant once contact is lost — the ground will not generate a negative 
normal force! 
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(ii) Plot N1 and N2 as a function of time for each of the four cases. Note that once you 
obtain your numerical approximation for Y and θ you can then apply Equations (5) to 
obtain the normal forces. Note you should provide one plot for each of the four cases 
(each plot will contain two curves, one for N1 and one for N2); please provide axis labels, 
legends, and figure titles. 

(iii) Now rerun your simulations (for all four velocity cases) for Δt = 0.0005 s. Indicate which 
velocities result in a loss of contact for this smaller Δt. When you change Δt from 0.001 
s to 0.0005 s do your conclusions change as to which velocities result in loss of contact? 

Part III: Runge-Kutta Approximation 

Preamble. In Part III we will implement a generic, four-stage Runge-Kutta integrator function 
RK4 which can work with a variety of functions g(w, t) through the appropriate Matlab function 
handle. 

In particular, in Part III we will write a function 

function [wdot, N1, N2] = gfunc_linear(w, t, v) 

that computes the rate of change of state ẇ (Matlab wdot) (a 4 × 1 column vector calculated as 
Aw + F ), and normal forces N1 and N2 (Matlab N1, N2) , from the current state w (Matlab w) 
(a 4 × 1 column vector), current time t (Matlab t), and velocity v (Matlab v). Note that, 
although you will not need N1 and N2 for your Runge Kutta integrator, you might find these 
outputs useful for computing the normal forces after running the simulation. You should use the 
particular function Hgauss() provided (see the appendix) as your H(x) in Equations (3) and (4).2 

The RK4 integrator function will then be defined as 

function [W, T] = RK4(gfunc_handle, w0, deltat, tfinal, v) 

where gfunc_handle is the handle (i.e., @gfunc_linear) to a function that, given a state w, time 
t, and velocity v, returns the corresponding rate of change of state ẇ; w0 is the initial state (a 4 × 1 
column vector); deltat is the desired integration time step Δt; tfinal is the desired final time for 
integration; and v is the robot velocity.3 On output, T is a 1 × (J + 1) (where J ≈ tfinal/Δt) row 
vector of the times tj = j Δt, 0 ≤ j ≤ J , associated with the integration, and W is a 4 × (J + 1) 
array of the (RK4 approximate) states w̃j , 0 ≤ j ≤ J . D 

7. (20 pts) 

(i) Provide a plot on the four-stage Runge-Kutta absolute stability diagram (Figure 19.14(b) 
of the text) with λkΔt, k = 1, 2, 3, 4, indicated for each of the three cases Δt1 = 0.2 s, 
Δt2 = 0.1 s, and Δt3 = 0.001 s. Note you should provide a single plot with all three 
cases (each case corresponding to a different Δt) on the one plot but with a different 
symbol for (the four λkΔt points associated with) each case. 

(ii) Which Δt is/are absolutely stable for the four-stage Runge-Kutta? Clearly indicate for 
each Δt either stable or unstable. 

2It would also be possible to pass the handle of the Matlab function associated with (any) chosen H(x); we do 
not ask you to provide this generality. 

3Note it is possible to eliminate the v argument from RK4 — such that all the system information is included in 
gfunc_handle and hence RK4 is a generic Runga-Kutta integrator — by appeal to anonymous functions. However, 
for our purposes here you can follow the simpler and more explicit approach suggested. 
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The file rk4sb.mat (see the appendix) contains the absolute stability “neutral boundary” of 
Figure 19.14(b); you need only add to the plot the λkΔt, k = 1, 2, 3, 4, for the three cases 
requested. 

8. (20 pts) Based	 on your (linear) state space equations from Question 2, write a function 
gfunc_linear, with the inputs and outputs as defined above in the Preamble. 

(i) Please copy-paste your Matlab function gfunc_linear into your problem set (and also 
upload to stellar). 

(ii) What do you expect your function gfunc_linear to return for output wdot for the case 
in which input w0 is the equilibrium position weq ≡ [Yeq, 0, θeq, 0]T and t = 0, v = 0? 
What does your function gfunc_linear in fact return when you run your code for this 
equilibrium input argument? 

9. (30 pts) Write	 a four-stage Runge-Kutta integrator function, with inputs and outputs as 
defined in the Preamble above and as described in Example (19.1.14) of the text. Run your 
RK4 code with your gfunc_linear function, initial state w0 = [0, 0, 0.1, 0]T, velocity v = 0, 
final time tfinal = 2 s, and Δt = 0.2 s (first run) and Δt = 0.1 s (second run) and Δt = 0.001 s 
(third run), using the syntax 

[W, T] = RK4(@gfunc_linear, w0, deltat, tfinal, v) 

(i) Please copy-paste your Matlab function RK4 into your problem set (and also upload to 
stellar).  

˜ (ii) Provide a 3 × 3 table: tabulate (in the three columns) θ(tfinal), θ(tfinal), and |θ(tfinal) − 
θ̃(tfinal)| for (in the three rows) Δt = 0.2 s, Δt = 0.1 s, and Δt = 0.001 s. Make sure 
to clearly label the rows and columns of the table. Note that θ is the exact analytical 
solution from Equations (7) and θ̃ refers to your Runge-Kutta approximation. 

(iii) Do your numerical results agree with your predictions of Question 7 as to which Δt 
should be stable for RK4? 

(iv) Which scheme is more accurate for Δt = 0.001 s — Crank-Nicolson or RK4? 

Note here you compare the accuracy of Crank-Nicolson and RK4 for the same value of the 
time step. We can also consider the efficiency — the cost to achieve the same accuracy. Often 
RK4 will win this competition: RK4 provides higher order convergence than Crank-Nicolson 
but without the need to solve a linear system (since RK4 is explicit, while Crank-Nicolson is 
implicit). However, if stability is an issue, Crank-Nicolson could prove the better choice. 

10. (10 pts) Run your RK4 code with your gfunc_linear function once again, but now for initial 
state w0 = weq = [Yeq, 0, θeq, 0]T from Equations (8). You may choose Δt = 0.001 s. 

Test four different cases: v = 0.25, v = 1.2, v = 5, and v = 10. 

(i) Indicate, for tfinal = 1.25/v (you may use ceil of 1.25/v), which velocities result in a loss 
of contact. Note you may continue your simulations beyond the loss of contact point (or 
you may terminate the simulation upon loss of contact), however the calculations are 
not physically relevant once contact is lost — the ground will not generate a negative 
normal force! 
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(ii) Plot N1, and N2 as a function of time for each of the four cases. Note you should provide 
one plot for each of the four cases (each plot will contain two curves, one for N1 and one 
for N2); please provide axis labels, legends, and figure titles. 
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Appendix 

1. The parameters for the mobile robot — except for k1 and k2, which will be found in Part I 
— are listed in Table 1. 

g 9.81 m/s2 

m 1.456 kg 
Izz 0.012 kg-m2 

L1 0.107 m 
L2 0.107 m 
c1 1.5 N-s/m 
c2 1.5 N-s/m 

Table 1: Mobile robot parameters. 

2. The file spring_data.mat contains the data from one load vs. displacement test (see Figure 2) 
of a plastic, parallel beam flexure spring. Although the flexure spring shown in Figure 2 differs 
in appearance from the coil spring shown in Figure 1(b), the two springs can be considered 
to be functionally equivalent. The loads in Newtons are stored in force; the nondimensional 
displacements δ/δmax are stored in delta_over_delta_max. Note that for our experiments 
δmax = 0.0165 meters. 

3. The function Hgauss takes one argument x corresponding to an x-coordinate or series of x-
coordinates and returns the height of the ground H(x) at x and its spatial derivative H '(x) in 
H and dHdx. All distances are assumed to be in meters. A plot of H(x) is shown in Figure 3. 

function [H, dHdx] = Hgauss(x)  
A = 0.0254;  
sig = 0.0288;  
x0 = 0.3;  
H = A*exp(-(x-x0).^2/(2*sig^2));  
dHdx = -(x-x0)./sig^2.*H;  

4. The file rk4sb.mat contains the real and imaginary coordinates of the “neutral boundary” 
of the RK4 absolute stability diagram: you may plot as plot(rk4sb(:,1), rk4sb(:,2)). 

5. The function animate_robot animates the robot’s states over time and takes four arguments 
W, corresponding to the 4 × J array of states returned by RK4, T, corresponding to the 1 × J 
array of times returned by RK4, v, the velocity of the robot, and steps_per_frame, an 
integer greater than or equal to 1 that can be used to control the number of integration time 
steps to increment for each successive animation frame. For example, the following call to 
animate_robot would animate the simulation results stored in W at a speed of 2 integration 
steps per frame: 

animate_robot(W,T,v,2) 
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Figure 2: Spring constant test setup showing spring and digital scale.  
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Figure 3: H(x) as defined by Hgauss.m. 

Note that to slow down the animation below the minimum speed of 1, you would need to use 
a smaller time step. 

Figure 4 shows a sample frame from an animation in which the front caster of the robot 
has just reached the peak of the bump. The animate_robot function extracts the Y and θ 
information from the input W , computes X = vt for each time in T , and draws the robot 
body as a line with the appropriate center and slope. The wheels are then drawn either 
in contact with the ground if Y1 ≤ h1 for the rear wheel or Y2 ≤ h2 for the front wheel. 
Otherwise, in accordance with our assumption of massless wheels, they simply follow the rear 
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or front of the robot, which we can assume has lost contact with the ground.  
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Figure 4: Sample frame from animate_robot animation. 

Note you are not obligated to use this animate_robot function. You might find it useful in 
confirming that your results look reasonable. Or you may just find it a gratifying graphical 
fashion by which to visualize your solutions. 
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