
Matlab Exercises Recitation 2† 2.086 Spring 2012 

Recitation 2: Wednesday, 15 February / Friday, 17 February 
Matlab Exercises Recitation 2 due: Tuesday, 21 February 2012 at 5 PM by upload to Stellar 

Format for upload: Students should upload to the course Stellar website a folder 

YOURNAME MatlabExercises Rec2 

which contains the completed scripts and functions for the assigned Matlab Exercises Recitation 2: 
all the scripts should be in a single file, with each script preceded by a comment line which indi­
cates the exercise number; each function .m file should contain a comment line which indicates the 
exercise number. 

1. (6.094 1.2) Write a script to make the following single-index arrays. Leave off the semicolons 
so that your results are displayed. 

(a) p = [3.14, 15, 9, 26] 

(b) r = [100, 99, 98, . . . , 2, 1] 
1 2 98(c) s = [0, . . . , 1]99 , 99 , 99 , 

Note you should find the colon operator helpful in constructing these single-index arrays. 

2. (This is an extension to Exercise 4. of Recitation 1.) Write a script which finds N∗ such that 
FN∗ < 1000 and FN∗+1 ≥ 1000 and also constructs the single-index array Ffib of the associ­
ated Fibonacci numbers [F1, F2, . . . , FN∗ ]. This should be a relatively simple modification to 
your while loop of Exercise 4. of Recitation 1: initialize (say) Ffib outside the loop, and then 
use horizontal concatenation to “grow” the Ffib array each time through the loop; note you 
can eliminate your Nstar_tmp variable from earlier and instead evaluate the length of the 
final Ffib array. Note a “quick and dirty” debug plot can be performed after (and outside) 
the loop with plot(Ffib,'o'). 

Comment : When we get to double-index arrays we will emphasize the importance of ini­
tializing arrays (with zeros and later spalloc). Initialization ensures that you control the 
size/shape of the array and also is the most efficient way to allocate memory. On the other 
hand, concatenation can be very useful in dynamic contexts (in which array size may not 
be known a priori) or in situations in which a large array is most easily expressed in terms 
of several smaller arrays. But use concatenation sparingly in particular in computationally 
intensive codes. 

3. Write a script to calculate the sum of a geometric series with N + 1 terms, 

NN 
2 3 NS = r i = 1 + r + r + r + . . . + r , 

i=0 

†Some of the questions were derived from Learning Matlab by Tobin Driscoll, Numerical Computing With Mat-
lab by Cleve Moler, Getting Started With Matlab by Rudra Pratap, The Art of Matlab by Loren Shure, and 
the MIT 2010 IAP course 6.094; these are attributed where applicable. These exercises were initially assembled by 
Dr. Justin Kao. 

1
 



for the particular case of N = 10 and r = 1/2. Use ones(1,N+1) to set up a single-index (row) 
array of all r’s, the colon operator to set up a single-index array of exponents, array “dotted” 
operators to perform the exponentiation, and the Matlab built-in function sum to perform 
the summation — no for or while loops allowed! (In fact, a single line of Matlab code 
should suffice, though you may wish to break this into a few lines for improved readability.) 

4. Write a script which given a vector of distinct points xvec = [x1, x2, . . . , xN ] and a point x 
finds the index i∗ such that xi∗ ≤ x and xi∗+1 > x. You may assume that the points are 
ordered and distinct, xi < xi+1, 1 ≤ i ≤ N − 1, but you should not assume that the points 
are equidistantly spaced. You may also assume that x1 ≤ x ≤ xN . 

To write your code, you should use array relational operators, the Matlab built-in find, 
and then (say) the Matlab built-in max (or length) — no for loops allowed.
 

Run your script for two cases: x = 1./sqrt(2) and xvec = 0.01*[0:100]; x = 0.5 and
 
xvec = sort(rand(1,100)). (In each case, include these assignment statements as the first
 
two lines of your script.)
 

5. (Driscoll 5.1) Write a script to do the following: On a single figure, plot the functions sinh x, 
xcosh x, tanh x, and e for −1 ≤ x ≤ 1, with point spacing Δx = 1/10. Make sinh a red line, 

cosh a black dotted line, tanh a blue line with circles at each point, and ex just green ×’s with 
no line. Make a legend. Label your axes and give the figure a title. Use linspace to create 
a vector of x values and call each Matlab mathematical function with vector arguments 
to create the corresponding vector of “y” values. (See Section 5.4 of the text for a plotting 
“template.”) 

2
 



MIT OpenCourseWare
http://ocw.mit.edu

2.086 Numerical Computation for Mechanical Engineers
Fall 2012
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

