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1 Strain-Displacement Relation for Plates 

1.1 1-D Strain Measure 

1.1.1 Engineering Strain 

Engineering strain ε is defined as the relative displacement: 

ε = 
ds − ds0 (1)

ds0 

where ds0 is the increment of initial lenght and ds is the increment of current length. 

1.1.2 Green-Lagrangian Strain 

Instead of comparing the length, one can compare the square of lengths: 

0E = 
ds2 − ds2 

(2)
2ds20 

ds − ds0 ds + ds0 
= 

ds0 2ds0 

Where ds ds0, the second term is Eq. (2) tends to unity, and the Green strain →
measure and the engineering strain become identical. Equation (2) can be put into 
an equivalnet form: 

ds2 − ds20 = 2Eds
2 (3)0 

which will now be generalized to the 3-D case. 

1.2 3-D Strain Measure 

1.2.1 Derivation of Green-Lagrangian Strain Tensor for Plates 

Let define the following quanties: 

• a = [ai]: vector of the initial (material) coordinate system 

• x = [xi]: vector of the current (spatial) coordinate system 

• u = [ui]: displacement vector 

where the index i = 1, 2, 3. The relation between those quantities is: 

xi = ai + ui (4) 

dxi = dai + dui 

1




a 

u 

x 

du 

da dx 

a

u

x

du

da dx

OO

Now, the squares of the initial and the current length increment can be written 
in terms of ai and ui: 

ds20 = daidajδij (5) 

ds2 = dxidxj δij (6) 

=(dai + dui) (daj + duj ) δij 

where the Kronecker tensor δij reads: 

δij =


¯̄̄̄
¯̄



1 0 0 

0 1 0 


¯̄̄̄
¯̄



(7)

0 0 1 


The vector u can be considered as a function of: 

•	 the initial (material) coordinate system, u (a), which leads to Lagrangian 
descripion, or 

•	 the current (spatial) coordinates, u (x), which leads to the Eulerian descrip-
tion 

In structural mechanics, the Lagrangian description is preferable: 

ui = ui (ai) (8) 
∂ui

dui = dak = ui,k dak
∂ak 

∂uj
duj = dal = uj ,l dal

∂al 

Let us calculated the difference in the length square: 

ds2 − ds20 = (dai + dui) (daj + duj) δij − daidaj δij (9) 

2 



Using Eq. (8) and the definition of δij , the difference in the length square can be 
transformed into: 

ds2 − ds20 = (duj dai + duidaj + duiduj ) δij (10) 

= (uj ,l dal dai + ui,k dak daj + ui,k dak uj ,l dal) δij 

= [uj ,l (dajδjl) dai + ui,k (daiδik) daj + ui,k uj ,l (daiδik) (dajδjl)] δij 

= (uj ,i +ui,j +ui,k uj ,k ) daidaj 

=2Eij daidaj 

where, by analogy with the 1-D case, the Lagrangian or Green strain tensor Eij is 
defined: 

1 
Eij = (ui,j +uj ,i +uk,i uk,j ) (11)

2

In the case of small displacement gradient (uk,i ¿ 1), the second nonlinear term 
can be neglected leading to the defintion of the infinitesimal strain tensor: 

1 
εij = (ui,j +uj ,i ) (12)

2

From the defintion, the strain tensor is symmetric εij = εji, which can be seen by 
intechanign the indices i for j and j for i. In the moderately large deflection theory 
of structures, the nonlinear terms are important. Therefore, Eq. (11) will be used 
as a starting point in the development of the general theory of plates. 

Components of Green-Lagrangian Strain Tensor Let define the following 
range convention for indices: 

• Greek letters: α, β, ... = 1, 2 

• Roman letters: i, j, ... = 1, 2, 3 

With this range convention, the Roman letters are also written as: 

i =α, 3 (13) 

j = β, 3 

The Lagrangian or Green strain tensor can be expressed: 

11 12 13 

3 

21 22 23 

31 32 33 3 33 

ij 

E E E 

E E 

E E EE 

E E E E E 

αβ β 

α 

= = 

# # 
# # 
# # 

" " " # "  " " " # "  

# # 

where Eαβ is the in-plane component of strain tensor, Eα3 and E3β are out-of-plane 
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le
ce

shear components of strain tensor, and E33 is the through-thickness component of 
strain tensor. Similarily, displacement vector can be divided into two components: 

ui = 

1u 

2u 

" 

= 

u 

v 
" 

= 

" 

w wu3 

uα 

where uα is the in-plane components of the displacement vector, and u3 = w is the 
out-of-plane components of the displacement vector and also called as the trans-
verse displacement. 

Initial Undeformed Configuration 

x 

z 

η 

ξ 

midd
surfa 

Deformed Configuration 

a 

x u 

uα 

3u

Assumptions of the von Karman Theory The von Karman thoery of mod-
erately large deflection of plates assumes: 

1. The plate is thin.	 The thickness h is much smaller than the typical plate 
dimension, h L.¿ 

2. The magnitude of the transverse deflection is of the same order as the thickness 
of plate, |w| = O (h). In practice, the present theory is still a good engineering 
approximation for deflections up to ten plate thickness. 
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3. Gradients of in-plane displacements uα,β are small so that their product or 
square can be neglected. 

4. Love-Kirchhoff hypothesis is satisfied. In-plane displacements are a linear 
function of the z−coordiate (3-coordinate). 

uα = u◦α − z u3,α (14) 

where u◦α is the displacement of the middle surface, which is independent of 
z−coordinate, i.e. uα◦ ,3 = 0; and  u3,α is the slope which is negative for the 
"smiling" beam. 

z 

5. The out-of-plane displacement is independent of the z−coordiante, i.e. u3,3 = 
0. 

1.2.2 Specification of Strain-Displacement Relation for Plates 

In the theory of moderately large deflections, the strain-displacement relation can 
be specified for plates. 

In-Plane Terms of the Strain Tensors From the general expression, Eq. (11), 
the 2-D in-plane componets of the strain tensor are: 

1 
Eαβ = (uα,β +uβ ,α +uk,α uk,β ) (15)

2

Here, consider the last, nonlinear term: 

uk,α uk,β = u1,α u1,β +u2,α u2,β +u3,α u3,β (16) 

= uγ,α uγ ,β +u3,α u3,β 

In the view of the Assumption 3, the first term in the above equation is zero, 
uγ ,α uγ ,β ' 0. Therefore, the 2-D in-plane components of strain tensor reads: 

1 
Eαβ = (uα,β +uβ,α +w,α w,β ) (17)

2

5 



where w = u3. Introducing Eq. (14) into Eq. (17), i.e. applying Love-Kirchhoff 
hypothesis, one gets: £


w,β
¤


(18)

¢
1


From the definiton of the curvature, one gets: 

¡
¡
¡

Eαβ = (uα
◦ − z w,α ) ,β +

2 
,α +w,αu◦β − z w,β ¢
1


u◦α,β +u
◦
β,α −2 z w,αβ +=
 w,α w,β

2

1
 ¢
 1


u◦α,β +u
◦
β,α − z w,αβ +=
 w,α w,β

2
 2


καβ = −w,αβ (19) 

Now, Eq. (18) can be re-casted in the form: 

Eαβ = αβ + z καβ (20)E◦

where the strain tensor of the middle surface E◦ is composed of a linear and a αβ 
nonlinear term: ¢
1
 1 

w,α w,β (21)
¡

In the limiting case of small displacements, the second term can be neglected as 
compared to the first term. In the classical bending theory of plate, the in-plane 
displacements are assumed to be zero uα = 0 so that strains are only due to the 
curvatue: 

Eαβ = z καβ (22) 

E◦αβ u◦α,β +u
◦
β,α +=


2
 2


where 

καβ =


¯̄̄̄


κ11 κ12 

κ21 κ22 

¯̄̄̄

=
−


¯̄̄̄
¯̄̄̄



¯̄̄̄
¯̄̄̄



=
−w,αβ (23)


∂2w ∂2w 
∂x2 ∂x∂y

∂2w ∂2w

∂x∂y ∂y2 

In the above equation, κ11 and κ22 are curvatures of the cylindrical bending, and 
κ12 is the twist which tells how the slope in the x−direction changes with the 
y−direction: 

∂
µ

∂w

∂x


¶


κ12 = 
∂y

for a cylinder


12 0κ = 

6




³ ´ 
Interpretation of the linear terms: 12 uα

◦ ,β +u
◦
β,α Each component can 

be expressed in the followings: 

1 du1
ε11 = (u1,1 +u1,1 ) = u1,1 = (24)

2 dx 
1 du2

ε22 = (u2,2 +u2,2 ) = u2,2 = (25)
2 dy 

µ ¶
1 1 du1 du2

ε12 = (u1,2 +u2,1 ) =  + (26)
2 2 dy dx 
1 du1


ε12|if u2=0 = 2 dy


ε11 u2 ≡ 0 

y 
x 

22ε

y 
x 

12ε

1u

y 
x 

Therefore, ε11 and ε22 are the tensile strain in the two directions, and ε12 is the 
change of angles, i.e. shear strain. 

Interpretation of the nonlinear term: 2
1 w,α w,β Let α = 1 and β = 1. 

Then, the nonlienar term reads: 

1 
2
w,α w,β 

¯ ¯ ¯ ¯ 
α=1,β=1 

= 
1 
2 
dw 
dx 

dw 
dx 

= 
1 
2

µ
dw 
dx 

¶2 

(27) 

One can also obtain the same quantity by the defintion of 1-D Green-Lagrangian 
strain: ¡ ¢ µ ¶2 µ ¶2ds2 − ds2 ds20 + dw2 − ds2 1 dw 1 dw 

E =
2ds0

2 
0 ' 

2ds0
2 

0 =
2 ds0 

=
2 dx 

(28) 
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dx 
x 

ds0 = dx 

ds0 
ds2 = ds0

2 + dw2 

dw
ds ,z w  

Thus, the conclusion is that the nonlinear term 12 w,α w,β represents the change of 
length of the plate element due to finite rotations. 

Out-Of-Plane Terms of the Strain Tensors Refering to the definition intro-
duced in Section 1.2.1, there are three other componets of the strain tensor: E3β, 
Eα3 and E33. Using the general expression for the components of the strain tensor, 
Eq. (11), it can be shown that the application of Assumption 4 and 5 lead to the 
following expressions: 

1 
E3β = (u3,β +uβ,3 +uk,3 uk,β ) (29)

2

1


= [u3,β +uβ,3 +(u1,3 u1,β +u2,3 u2,β +u3,3 u3,β )]
2

1


= [u3,β −u3,β +(−u3,1 u1,β −u3,2 u2,β )]
2

1


= (−u3,1 u1,β −u3,2 u2,β )
2

1


= w,γ uγ ,β−
2

1 
Eα3 = (uα,3 +u3,α +uk,α uk,3 ) (30)

2

1


= [uα,3 +u3,α +(u1,α u1,3 +u2,α u2,3 +u3,α u3,3 )]
2

1


= [−u3,α +u3,α +(−u1,α u3,1 −u2,α u3,2 )]
2

1


= (−u1,α u3,1 −u2,α u3,2 )
2

1


= w,γ uγ ,α−
2
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1 
E33 = (u3,3 +u3,3 +uk,3 uk,3 ) (31)

2 h i1 2 2 2 = u3,3 + (u1,3 ) + (u2,3 ) + (u3,3 )
2h i1 2 2 = (u1,3 ) + (u2,3 )

2 h i 
=
1 
(−u3,1 )

2 + (−u3,2 )
2 

2 
1 

= w,γ w,γ
2

The above are all second order terms which vanish for small deflection theory of  
plates. In the theory of moderately larege deflection of plates, the out-of-plate shear 
strains as well as the through-thickness strain is not zero. Therefore, an assumption 
"plane remains plane," expressed by Eq. (14), does not mean that "normal remains 
normal." The existance of the out-of-plane shear strain means that lines originally 
normal to the middle surface do not remain normal to the deformed plate. However, 
the incremental work of these strains with the corresponding stresses is negligible: 

E3βσ3β, Eα3σα3 and E33σ33, are small (32) 

because the corresponding stress σ3β, σα3 and σ33 are small as compared to the 
in-plane stress σαβ . One can conclude that the elastic strain energy (and even 
plastic dissipation) is well approximated using the plane strain assumption: Z Z 

1 1 
σijεijdz ' σαβ εαβdz (33)
2 2h h 

9




2 Derivation of Constitutive Equations for Plates 

2.1 Definitions of Bending Moment and Axial Force 

Hook’s law in plane stress reads: 

E 
σαβ = [(1 − ν) εαβ + ν εγγ δαβ] (34)

1 − ν2 

In terms of components: 

E 
σxx = (εxx + ν εyy) (35)

1 − ν2 

E 
σyy = (εyy + ν εxx)

1 − ν2 

E 
σxy = εxy

1 +  ν 

Here, strain tensor can be obtained from the strain-displacement relations: 

εαβ 
◦

αβ (36)= εαβ + z κ

Now, define the tensor of bending moment: Z

2
h 

Mαβ ≡ σαβ z dz  (37) 
2
h−

and the tensor of axial force (membrane force): Z

2
h 

Nαβ ≡ σαβ dz (38) 
2
h−

2.2 Bending Energy 

2.2.1 Bending Moment 

Let us assume that ε◦ = 0. The bending moment Mαβ can be calculated: αβ Z
E 2

h 

(39)
Mαβ 
h 

= [(1 − ν

E £ ¤
= (1 − ν) ε◦αβ + ν ε◦ δαβ
1 − ν2 γγ 

) εαβ + ν εγγ δαβ ] z dz 

1 − ν2 −

2 Z

2
h 

z d 
z 

2
h−Z
2
h 

E
 2 dz+ [(1 − ν) καβ + ν κγγ δαβ]2 z

1 − ν


2
h−

Eh3 

= 
12 (1 − ν2) 

[(1 − ν) καβ + ν κγγ δαβ] 

10 



Here, we define the bending rigidity of a plate D as follows: 

D = 
Eh3 

12 (1 − ν2) 

Now, one gets the moment-curvature relations: 

(40) 

Mαβ = D [(1 − ν) καβ + ν κγγ δαβ] (41) 

Mαβ = 

¯̄̄̄


M11 M12 ̄̄̄¯
 (42)

M21 M22 

where M12 = M21 due to symmetry. 

M11 = D (κ11 + ν κ22) (43) 

M22 = D (κ22 + ν κ11) 

M12 = D (1 − ν) κ12 

2.2.2 Bending Energy Density 

One -Dimensional Case Here, we use the hat notation for a function of certain 
argument such as: 

M11 = M̂11 (κ11) (44) 

= D κ11 

Then, the bending energy density Ūb reads : Z
 κ̄11 

Ūb = M̂11 (κ11) dκ11 (45) 
0 Z
 κ̄11 

= D κ11 dκ11 
0 

1 
= D (κ̄11)

2 

2

1


Ūb = M11 κ̄11 (46)
2 

11κ

11M

11dκ 

D 

11




General Case General definition of the bending energy density reads: I 
Ūb = Mαβ dκαβ (47) 

22κ

11κ
κ 

0 

Calculate the energy density stored when the curvature reaches a given value κ̄αβ. 
Consider a straight loading path: 

καβ = η κ̄αβ (48) 

dκαβ = κ̄αβ dη 

Mαβ 

αβκ0η = 

1η = 

η 

αβκ

Mαβ 

Mαβ = M̂αβ (καβ ) (49) 

= M̂αβ (η κ̄αβ) 

= η M̂αβ (κ̄αβ) 

12




where M̂αβ (καβ) is a homogeneous function of degree one. I 
Ūb = M̂αβ (καβ ) dκαβ (50) Z 1 

= η M̂αβ (κ̄αβ) κ̄αβ dη 
0 Z 1 

= M̂αβ (κ̄αβ ) κ̄αβ η dη  
0 

=
1 
M̂αβ (κ̄αβ) κ̄αβ

2 
1 

= Mαβ κ̄αβ
2 

Now, the bending energy density reads: 

Ūb = 
D 
[(1− ν) κ̄αβ + ν κ̄γγ δαβ] κ̄αβ (51)

2 
D 

= [(1− ν) κ̄αβ κ̄αβ + ν κ̄γγ κ̄αβ δαβ]
2 
D h 2 

i 
= (1− ν) κ̄αβ κ̄αβ + ν (κ̄γγ )
2 

The bending energy density expressed in terms of components: n h i oD 
Ūb = (1− ν) (κ̄11)

2 + 2  (κ̄12)
2 + (κ̄22)

2 + ν (κ̄11 + κ̄22)
2 (52)

2 n h i oD 2 2 2 = (1− ν) (κ̄11 + κ̄22) − 2 κ̄11 κ̄22 + 2  (κ̄12) + ν (κ̄11 + κ̄22)
2 nh i h io 

= 
D 

(κ̄11 + κ̄22)
2 − 2 κ̄11 κ̄22 + 2  (κ̄12)

2 − ν −2 κ̄11 κ̄22 + 2  (κ̄12)
2 

2 n h ioD 2 2 2 = (κ̄11 + κ̄22) − 2 κ̄11 κ̄22 + 2  (κ̄12) − ν −2 κ̄11 κ̄22 + 2  (κ̄12)
2 n h ioD 2 2 = (κ̄11 + κ̄22) + 2  (1− ν) −κ̄11 κ̄22 + (κ̄12)
2 

n h io 
¯ D 2 2Ub = (κ̄11 + κ̄22) − 2 (1− ν) κ̄11 κ̄22 − (κ̄12) (53)

2 

2.2.3 Total Bending Energy 

The total bending energy is the integral of the bending energy density over the area 
of plate: Z 

Ub = Ūb dA (54) 
S 

13 



2.3 Membrane Energy 

2.3.1 Axial Force 

Assume that καβ = 0. The axial force can be calculated: 

2
hZ

E

(55)
N
αβ [(1 − ν) εαβ + ν εγγ δαβ] dz=


1 − ν2 −
2
h Z


−

£2
h 

Z
(1 − ν) ε◦ ◦ δαβ + ν εγγ αβ

¤
E

dz
=


1 − ν2 

+ 

2
h 

2
h 

E


hZ
[(1 − ν

2
h 

) καβ + ν κγγ δαβ] z dz  
1 − ν2 −£
 ¤
E
 2 

(1 − ν) ε
◦ ◦ δαβ + ν εγγ αβ dz
=

1 − ν2 

+ 

2
h−Z

¤ 
) καβ + ν κγγ δαβ ] 

Here, we define the axial rigidity of a plate C as follows: 

2
h 

E

[(1 − ν

£ 
(1 ν− 

z d 
z 

1 − ν2 

2
h−

Eh

) ε◦ ◦ δαβ + ν εγγ =
 αβ

1 − ν2 

Eh 
C = 

2 (56)
1 − ν

Now, one gets the membrane force-extension relation: 

ih 
Nαβ = C (1 − ν) ε◦ + ν ε◦ δαβαβ γγ (57)


Nαβ = 

¯̄̄̄



¯̄̄̄



N11 N12 (58)

N21 N22 

where N12 = N21 due to symmetry. 

N11 = C (ε◦ ◦ (59)11 + ν ε22) 

N22 = C (ε◦ ◦
22 + ν ε11) 

N12 = C (1 − ν) ε◦11 

2.3.2 Membrane Energy Density 

Using the similar definition used in the calculation of the bending energy density, 
the extension energy (membrane energy) reads: I


Ūm = N dε◦ (60)αβ αβ 
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Calculate the energy stored when the extension reaches a given value ε̄◦ . Consider  αβ 
a straight loading path: 

ε◦ = η ε̄◦ (61)αβ αβ 

dε◦ ε◦ dηαβ =¯αβ 

¡ ¢ 
Nαβ = N̂αβ εαβ

◦ (62) ¡ ¢ 
= N̂αβ ε◦η ¯αβ ¡ ¢ 
= η N̂αβ ε̄

◦
αβ ³ ´ 

where N̂αβ ε◦ is a homogeneous function of degree one. αβ Z ε̄◦
Ūm = 

αβ 

N̂αβ 
¡
ε◦αβ 

¢ 
dε◦αβ (63) 

0Z 1 ¡ ¢ 
= η N̂αβ ε̄

◦
αβ ε̄αβ

◦ dη 
0 
1 ¡ ¢ 

= ˆ ε̄◦ ε̄◦Nαβ αβ αβ2 
1 

= Nαβ ε̄
◦

2 αβ 

Now, the extension energy reads: 

¯

C

C £
h ¡

¤
¢2 
i
Um = (1− ν) ε̄αβ

◦ + ν ε̄γγ
◦ δαβ ε̄αβ

◦ (64)

2


= (1− ν) ε̄◦ ε̄αβ
◦ + ν ε̄◦γγ2 αβ 

The extension energy expressed in terms of components: n h i o 
Ūm = 

C 
(1− ν) ε◦ + 2  (ε̄◦ + (ε̄◦ + ν (ε̄◦ ε◦22)

2 (65)(¯11)
2 

12)
2 

22)
2 

11 + ¯2 n h i oC 
= (1− ν) ε◦ ε◦ − 2 ¯11 ̄ 22 + 2  (ε◦ + ν ε◦ ε◦(¯11 + ¯22)

2 ε◦ ε◦ ¯12)
2 (¯11 + ¯22)

2 

2 n h io 
= 
C 

(¯11 + ¯22)
2 ε◦ ε◦ ¯12)

2 −2 ¯11 ̄ 22 + 2  (ε◦ε◦ ε◦ − 2 ¯11 ̄ 22 + 2  (ε◦ − ν ε◦ ε◦ ¯12)
2 

2 n h io 
ε◦ ε◦ + 2  (1− ν) ε◦ ε◦ ¯12)

2 = 
C 
2 

(¯11 + ¯22)
2 −¯11 ̄ 22 + (ε

◦

n h ioC 
Um = ε◦ ε◦ − 2 (1− ν) ¯ ε◦ ε◦(¯11 + ¯ ε◦ 22 − (¯ (66)¯

22)
2 

11 ̄ 12)
2 

2 
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2.3.3 Total Membrane Energy 

The total membrane is the integral of the membrane energy density over the area 
of plate:: Z 

Um = Ūm dS (67) 
S 
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3	 Development of Equation of Equilibrium and Boundary Condi-
tions Using Variational Approach 

3.1 Bending Theory of Plates 

3.1.1 Total Potential Energy 

The total potential energy of the system Π reads: 

Π = Ub − Vb	 (68) 

where Ub is the bending energy stored in the plate, and Vb is the work of external 
forces. 

Bending Energy Z 
1 

Ub = Mαβ καβ dS	 (69)
2 SZ 
1 

= Mαβ w,αβ dS−
2 S 

where the geometrical relation καβ = −w, has been used.αβ 

Work of External Forces 

Plate Loading Lateral load: 

q (x) = q (xα)	 (70) 

This is distributed load measured in [N/m2] or [lb/in2] force per unit area of the 
middle surface of the plate. 

qq( )x( )x

The distributed load contains concentrated load P as a special case: 

P (x0, y0) = P0δ (x − x0) δ (y − y0) (71) 

where δ is the Dirac delta function, [x0, y0] is the coordinate of the application of 
the concentrated force, and P0 is the load intensity. 

17




NOTE The shearing loads on the lateral surface of ice are normally not consid-
ered in the theory of thin plates. 

x 

Dirac -function δ

0x

Load Classification 

• Load applied at the horizontal surfaces. 

transverse load 

• Load applied at the lateral surfaces. 

edge force 

edge moment 

Loads are assumed to be applied to the middle plane of the plate 
NOTE Other type of loading such as shear or in-plane tension or compression 

do not deflect laterally the plate and therefore are not considered in the bending 
theory. 

18




in-plane tension

or compression


in-plane shear 

Potential Energy due to Lateral Load q Lateral (transverse) load does 
work on transverse deflection: Z 

q w  dS  (72) 
S 

This is also called a work of external forces. 

Potential Energy due to Edge Moment The conjugate kinematic variable 
associated with the edge moment is the edge rotation dw/dxn. 

edge moment 

dl 

Γ 

t 

n 

We apply only the normal bending moment Mnn: Z 
dw¯− 

Γ 
Mnn 

dxn 
dl (73) 

where the minus sign is included because positive bending moment results in a 
negative rotation and negative moment produces positive rotation. 

M < 0 M > 0nn nn 

xn0 a 
dw dw> 0 < 0dxn dxn 

w 

At the edge, Mtt = 0 and Mtn = 0. 
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1Q 2Q

V 

1x2x

Potential Energy due to Edge Forces Z 
V̄n w dl  (74) 

Γ 

n

Potential Energy due to All External Forces Now, the work of external 
forces reads: Z Z Z 

dw 
Vb = q w  dS  − M̄nn dl + V̄n w dl  (75) 

S Γ dxn Γ 

3.1.2 First Variation of the Total Potential Energy 

The total potential energy reads: Z 
1 

Π =−
2 S 

Mαβ w,αβ dS (76) Z Z Z 
dw¯ ¯− 

S 
q w  dS  + 

Γ 
Mnn 

dxn 
dl − 

Γ 
Vn w dl  

First variation of the total potential energy δΠ is expressed: Z 
δΠ = Mαβ δw,αβ dS (77)− ZS Z µ ¶ Z 

dw¯ ¯− q δw  dS  + Mnn δ 
dxn 

dl − Vn δw dl 
S Γ Γ 

We shall transform now the first integral with the help of the Gauss theorem. 
First note that from the rule of the product differentiation: 

Mαβ δw,αβ = (Mαβ δw,α ) ,β −Mαβ,β δw,α (78) 

then Z Z Z 
Mαβ δw,αβ dS = (Mαβ δw,α ) ,β dS − Mαβ ,β δw,α dS (79) 

S S S 

Now, the first integral on the right hand side of the above equation transforms to 
the line integral: Z Z Z 

Mαβ δw,αβ dS = Mαβ δw,α nβ dl − Mαβ ,β δw,α dS (80) 
S Γ S 
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The integrand of the second integral on the right hand side of the above equation 
transform to: 

Mαβ,β δw,α = (Mαβ,β δw) ,α −Mαβ,αβ δw (81) 

which results in: Z Z 
Mαβ δw,αβ dS = Mαβ δw,α nβ dl (82) 

S ΓZ Z 
− (Mαβ,β δw) ,α dS + Mαβ,αβ δw dS 

S S 

upon which the application of the Gauss rule gives:Z Z 
Mαβ δw,αβ dS = Mαβ δw,α nβ dl (83) 

S ΓZ Z 
− 

Γ 
Mαβ,β δw nα dl + 

S 
Mαβ,αβ δw dS 

We can return now to the expression for δΠ and substitute there the transformed 
first integral: Z 

δΠ = (−Mαβ,αβ −q) δw dS (84) 
SZ Z 

¯+ Mαβ,β δw nα dl − Vn δw dl ZΓ ZΓ 

− 
Γ 
Mαβ δw,α nβ dl + 

Γ 
M̄nn δw,n dl ³ ´ 

dwwhere δw,n = δ dxn 
. It is seen that integrals involving the prescribed forces M̄nn 

and V̄n are written in a local coordinate system xγ {xn, xt} while the remaining 
two integrals over the contour Γ are written in the global coordinate system xα. In  
order to make comparison, we have to decide on one coordinate system. We choose 
the local system. 

Consider the first integral: Z 
(Mαβ,β nα) δw dl (85) 

Γ 

The term in the parenthesis is a scalar quantity and thus remain unchanged with 
respect to the rotation of coordinate system. In the local system xγ , the line 
integral becomes: Z 

(Mγδ,δ nγ ) δw dl (86) 
Γ 

where γ = 1 is the normal direction n, and  γ = 2 is the tangential direction t. The  
coordinates of the unit normal vector is the local system are nγ {1, 0}. Hence, Z Z 

(Mγδ,δ nγ) δw dl = (M1δ,δ n1 +M2δ,δ n2) δw dl (87) 
Γ ΓZ 

= M1δ,δ δw dl 
Γ 

21




Furthermore, the integrand reads: 

M1δ,δ =M11,1 +M12,2 (88) 
∂M11 ∂M12 ∂Mnn ∂Mnt 

= + = + 
∂x1 ∂x2 ∂xn ∂xt 

and we call it the shear force in the normal direction n and denote: 

Qn ≡ Mnδ,δ δ = {1, 0} or {n, t} (89) 

Now, we can combine two line integrals in the equation of first variation of the total 
potential energy: Z ¡ ¢ 

Qn − V̄n δw dl (90) 
Γ 

How the remaining integral is transformed? Z Z 
(Mαβ nβ) δw,α dl = (Mγδ nδ) δw,γ dl (91) 

Γ Γ 

Because it is a scalar quantity, we simply switch indices from global system (α and 
β) to local  (γ and δ). As before nδ {1, 0} so after summing with respect to δ, we  
have: Z Z 

(Mγ1 n1 +Mγ2 n2) δw,γ dl = Mγ1 δw,γ dl (92) 
Γ ΓZ 

= Mγn δw,γ dl ZΓ 

= (Mnn δw,n +Mtn δw,t ) dl 
Γ 

The first term can be absorbed with the line integral representing potential energy 
of bending moment: Z ¡ ¢

¯− 
Γ 

Mnn − Mnn δw,n dl (93) 

There remains though one integral which does not fit to anything. Since the 
boundary term must be equilibrated, it is suspected that this term might belong to 
the shearing force term, at least partially: Z 

Mtn δw,t dl transverse term (94) 
Γ 

In order to compare this term with the shearing force term, we have to make this 
term comparable as far as the kinematic quantity describing variation is concerned. 
One integral involves δw and the other one δw,t. Note  that  ∂w,t = ∂ (δw) /∂xt is 
the derivative of the function δw in the tangential direction, i.e. direction along the 
curve Γ. This means that we can integrate by parts along Γ. Thus,  

Mtn δw,t = (Mtn δw) ,t −Mtn,t δw (95) 
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Z Z	 Z 
Mtn δw,t dl = (Mtn δw) ,t dl − Mtn,t δw dl (96) 

Γ Γ	 Γ 

The first term in the right hand is equal to the value of the integrand calculated at 
the beginning and end of the integration path: Z 

end 

Γ 
(Mtn δw) ,t dl = Mtn δw|beginning	 (97) 

Consider now two cases. 

•	 The contour Γ is a smooth closed curve, so the value at the beginning is equal 
to the value at the end: 

Mtn δw|end − Mtn δw| = 0 	 (98)beginning 

The term does not give any contribution. 

Γ 
end 

begining 

direction of 
integration 

•	 The contour Γ is piece-wise linear or composed of a finite number, k, of smooth  
curves with discontinuity. Therefore, the integration should be made in a 
piece-wise manner. Thus, the continuation of the beginning and end of each 
should be added: X 

endMtn δw|beginning (99) 
k 
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3.1.3 Equilibrium Equation and Boundary Conditions 

Now, we can write the final expression for the first variation of δΠ: Z 
δΠ = (−Mαβ,αβ −q) δw dS (100) 

SZ Z 
¯+ 

¡
Qn − V̄n 

¢ 
δw dl − 

¡
Mnn − Mnn 

¢ 
δw,n dl ÃΓ Γ Z ! X 

Mtn δw
end Mtn,t δw dl − |beginning − 

Γ Z k 

= (−Mαβ,αβ −q) δw dS

S
Z Z 

¯+ 
¡
Vn − V̄n 

¢ 
δw dl − 

¡
Mnn − Mnn 

¢ 
δw,n dl 

Γ ΓX 
end
− Mtn δw|beginning


k


where Vn = Qn +Mtn,t is the effective shear force. 
In order to make the functional Π stationary under arbitrary variation of the 

displacement field δw, there must hold: 

Equation of Equilibrium 

(101)
Mαβ ,αβ +q = 0  on S 

Boundary Conditions 

¯Mnn − Mnn = 0  or δw,n = 0  on Γ

Vn − V̄n = 0  or δw = 0  on Γ
 (102) 

at corner points 
Mnt = 0  or δw = 0  

of the contour Γ 

3.1.4 Specification of Equation for Rectangular Plate 

Consider a rectangular plate. 
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x t→ 

b 

a 

y → n 

Boundary Conditions For edges parallel to x-axis, the normal direction is the 
ydirection. 

Myy − M̄yy =0  or 
∂w 

= 0  (103)
∂y 

Vy − V̄y =0  or w = 0  

where 

Vx =Qx + 
∂Myx (104)
∂y 

∂Mxy
Vy =Qy + 

∂x


For edges parallel to y-axis, the normal direction is the x-direction.


∂w 
Mxx − M̄xx =0  or = 0  (105)

∂x 
Vx − V̄x =0  or w = 0  

where 

Vy =Qy + 
∂Mxy (106)
∂x 

∂Myx
Vx =Qx + 

∂y 

Interpretation of Corner Points 
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1 

2 
3 

4 

[ ]segment  k 

[ ]segment  1k − 

direction of 
integration 

Boundary condition reads: 

X 
end [2] 

δw[2] 
[1] 

δw[1] 
[4] 

δw[4] 
[3] 

δw[3]Mtn δw|beginning =Mtn − Mtn +Mtn − Mtn (107) 

where 
δw[3] = δw[2] (108) 

thus X ³ ´ 
end [1] 

δw[1] 
[2] [3] 

δw[2] 
[4] 

δw[4]Mtn δw|beginning = −Mtn + Mtn − Mtn +Mtn (109) 

Consider the right angle. 

x 

y 
[ ]k 

[ ]1k − 

for the k − 1 side n = x, t = y (110) 

for the k side n = y, t = x ³ ´ 

beginning Mtn δw| end 

at the right angle 
= (Mxy − Myx) δw (111) 

Interpretation of Corner Forces Plane stress: 

τxy = τyx symmetry (112) 
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surface  element σy 

τxyσx dS 

τyx 

Let us place the surface element at the corner. 

x 

y z Edge 
τ [k −1] 
xy 

τyx 

Edge 
[ ]k 

Mxy 

Myx 

The shearing stresses produce twisting moments which are in the opposite direction: 

M [k−1] = −M [k] (113)xy yx 

Therefore, the boundary condition at the corner becomes: ³ ´ 
Mtn δw| end = M [k−1] − M [k] δw = 2 Mxy δw = 0  (114)beginning xy yx 

(115)Fcorner = 2 Mxy 
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For the Entire Plate 

2 Mxy 

2 Mxy 

2 Mxy 

2 Mxy 

Interpretation of the Effective Shear Vx 

x 

dy

z
 Qx

dy 

Mxy 

∂M
Mxy + xy dy

∂y 

y 

Equilibrium reads: 

Qx dy + 

µ
Mxy + 

∂Mxy 
dy

¶ 

− Mxy (116)
∂y µ ¶

∂Mxy
= Qx + dy

∂y

= Vx dy


Vx = Qx + 
∂Mxy (117)
∂y 
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3.2 Bending-Membrane Theory of Plates 

3.2.1 Total Potential Energy 

The total potential energy of the system Π reads: 

Π = Ub + Um − Vb − Vm (118) 

where Ub is the bending strain energy, Um is  the membrane strain energy,  Vb is 
the potential energy of external loading causing flexural response, and Vm is the 
potential energy of external loading causing membrane response. 

Membrane Strain Energy The membrane strain energy reads: Z 
1 

Um = ε◦ dS (119)Nαβ αβ2 S 

where 
1 1 

ε◦ = (uα,β +uβ,α ) +  w,α w,β (120)αβ 2 2

Potential Energy of External Forces Evaluation of Boundary Terms 

Normal in-plane loading, Nnn Z 
N̄nn un dl (121) 

Γ 

where un is normal in-plane displacement. 

Shear in-plane loading, Ntt Z 
N̄tn ut dl (122) 

Γ 

where ut is shear component of the displacement vector. 

Potential Energy of External Forces Z Z 
Vm = N̄nn un dl + N̄tn ut dl (123) 

Γ Γ 

3.2.2 First Variation of the Total Potential Energy 

The first variation of the total potential energy reads: 

δΠ = (δUb − δVb) + (δUm − δVm) (124) 

The first parenthesis represent the terms considered already in the bending theory 
of plates. All we have to do is to evaluate the term in the second parenthesis. 
Here, the first variation of the membrane energy reads: Z 

δUm = Nαβ δλαβ dS (125) 
S 
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where 
1 1 

δλαβ = (δuα,β +δuβ,α ) +  (δw,α w,β +δw,β w,α ) (126)
2 2

Because of the symmetry of the tensor of membrane forces: 

Nαβ = Nβα (127) 

by using the characteristics of dummy indices we obtain: 

Nαβ δuβ,α = Nβα δuβ,α = Nαβ δuα,β (128) 

Now, the first variation of the membrane strain energy reads: Z ¿ ∙ ¸À
1 1 

δUm = Nαβ (δuα,β +δuβ,α ) +  (δw,α w,β +δw,β w,α ) dS (129)
2 2ZS 

= (Nαβ δuα,β +Nαβ w,β δw,α ) dS

S


Note that the displacement vector has now three components: 

{uα, w} (130) 

so that there are three independent variations: 

{δuα, δw} (131) 

We expect those to end up with three independent equations of equilibrium. The 
first term of δUm reads: Z Z Z 

Nαβ δuα,β dS = (Nαβ δuα) ,β dS − Nαβ ,β δuα dS (132) 
S S SZ Z 

= Nαβ δuα nβ dl − Nαβ ,β δuα dS ZΓ Z S 

= Nγδ δuγ nδ dl − Nαβ,β δuα dS ZΓ Z S 

= Nγ1 δuγ dl − Nαβ,β δuα dS ZΓ ZS 

= Nγn δuγ dl − Nαβ,β δuα dS ZΓ S Z 
= (Nnn δun +Ntn δut) dl − Nαβ ,β δuα dS 

Γ S 
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The second term of δUm reads: Z Z	 Z 
Nαβ w,β δw,α dS = (Nαβ w,β δw) ,α dS − (Nαβ w,β ) ,α δw dS (133) 

S S SZ	 Z 
= Nαβ w,β δw nα dl − (Nαβ w,β ) ,α δw dS ZΓ Z S 

= Nγδ w,δ δw nγ dl − (Nαβ w,β ) ,α δw dS ZΓ Z S 

= N1δ w,δ δw dl − (Nαβ w,β ) ,α δw dS ZΓ S Z 
= (N11 w,1 +N12 w,2 ) δw dl − (Nαβ w,β ) ,α δw dS ZΓ	 ZS 

= (Nnn w,n +Nnt w,t ) δw dl − (Nαβ w,β ) ,α δw dS 
Γ S 

Now, the variation of external work reads: Z	 Z 
δVm = N̄nn δun dl + N̄tn δut dl	 (134) 

Γ	 Γ 

3.2.3 Equilibrium Equation and Boundary Conditions 

The contribution of the term (δUm − δVm) then becomes: Z	 Z 
δ (Um − Vm) =  (Nnn δun +Ntn δut) dl − Nαβ,β δuα dS (135) 

Γ SZ	 Z 
+	 (Nnn w,n +Nnt w,t ) δw dl − (Nαβ w,β ) ,α δw dS ZΓ Z S 

¯	 ¯− ZΓ 
Nnn δun dl − 

Γ 
NZ 
tn δut dl	 Z ¡ ¢ ¡ ¢

¯	 ¯=− Nαβ,β δuα dS + Nnn − Nnn δun dl + Ntn − Ntn δut dl ZS Γ Z Γ 

− 
S 
(Nαβ w,β ) ,α δw dS + 

Γ 
(Nnn w,n +Nnt w,t ) δw dl 

The first three integrals involve independent variations of uα, i.e.  δuα or {δun, δut}. 
This gives us two independent equations of equilibrium in the plane of the plate: 

Equation of Equilibrium I 

(136)
Nαβ ,β = 0  on S 
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and two additional boundary conditions: 

Boundary Conditions I 

¯Nnn − Nnn = 0  or δun = 0  on Γ (137) 
¯Ntn − Ntn = 0  or δut = 0  on Γ 

The remaining two integrals involve variation in the out-of-plane displacement 
δw and thus should be combined with the equation of equilibrium and boundary 
conditions governing the flexural response. The terms involving surface integral 
should be added to the equation of equilibrium: 

Equation of Equilibrium II 

(138)
Mαβ,αβ +(Nαβ w,β ) ,α +q = 0  on S 

where the second term in the left hand is the new term arising from the finite 
rotation. 

The term with the line integral should be added to the corresponding term 
involving variation δw: Z ¡ ¢ 

Vn +Nnn w,n +Nnt w,t −V̄n δw dl = 0  (139) 
Γ 

The generalized boundary conditions reads: 

Boundary Conditions II- (A) 

(140)
Vn +Nnn w,n +Nnt w,t −V̄n = 0  or δw = 0  on Γ 

where the second and third terms in the left hand side of the first equation are the 
new terms arising from the finite rotation. 

If the boundaries of the plate are kept undeformed w,t = 0 (simply supported 
or clamped plate), then the boundary condition is satisfied: 

Vn +Nnn w,n −V̄n = 0  or δw = 0 on Γ (141) 

Physically, the additional terms represent the contribution of the axial force to the 
vertical equilibrium. Using the in-plane equilibrium, Nαβ,β = 0, the out-of-plane 
equilibrium can be transformed to the form: 

Mαβ,αβ +Nαβ ,α w,β +Nαβ w,αβ +q = 0  on S (142) 
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Equation of Equilibrium II’ 

(143)
Mαβ ,αβ +Nαβ w,αβ +q = 0  on S 

which is called  as the  von Karman equation.  Note  that  Nαβ is related through the 
Hook’s law with the gradient of the in-plane displacement uα, i.e.  Nαβ = Nαβ (uα). 
Therefore, the new term Nαβ w,αβ represents in fact coupling between in-plane and 
out-out-plane deformation. 

To make derivation complete, the final boundary conditions which do not changed 
from the bending theory of plate are presented: 

Boundary Conditions II- (B) 

¯Mnn − Mnn = 0  or δw,n = 0  on Γ 
(144)

at corner points 
Mnt = 0  or δw = 0  

of the contour Γ 
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4 General Theories of Plate 

4.1 Bending Theory of Plates 

4.1.1 Derivation of the Plate Bending Equation 

Then, groups of equations! 

•	 Equilibrium 
Mαβ,αβ +q = 0  on S (145) 

•	 Geometry 
καβ = −w,αβ (146) 

• Elasticity 
Mαβ = D [(1 − ν) καβ + ν κγγ δαβ ] (147) 

Eliminating curvature καβ between Eq. (146) and (147), we obtain: 

Mαβ = −D [(1 − ν) w,αβ +ν w,γγ δαβ ] (148) 

Substituting Eq. (148) into Eq. (145) reads: 

−D [(1 − ν) w,αβ +ν w,γγ δαβ] ,αβ +q =0  (149) 

−D [(1 − ν) w,αβαβ +ν w,γγαβ δαβ] +  q =0  

Note that the components of the Kronecker "δαβ" tensor are constant and thus are 
not subjected to differentiation: 

δαβ =


¯̄̄̄


1 0 

0 1 


¯̄̄̄

 or δαβ =


½

1 if α = β 

(150)

0 if α = β6

Also, note that only these components: 

¤αβ δαβ = ¤αα (151) 

survive in the matrix multiplication for which α = β. Therefore, Eq. (149) now 
reads: 

−D [(1 − ν) w,αβαβ +ν w,γγαα ] +  q = 0 	 (152) 

Because "γγ" are "dummy" indices, they can be replaced by any other indices, for 
example "ββ." 

−D [(1 − ν) w,αβαβ +ν w,ββαα ] +  q = 0 	 (153) 

The order of differentiation does not matter: 

w,αβαβ = w,ααββ = w,ββαα 
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Thus, two terms in Eq. (153) can now be added to give the plate bending equation: 

D w,ααββ = q for α, β = 1, 2 (154) 

Here, the index notation can be expended: 

w,ααββ =w,11ββ +w,22ββ (155) 

=w,1111 +w,2211 +w,1122 +w,2222 

=w,1111 +2 w,1122 +w,2222 

Now, letting "1 x", "2 y" leads:  → → µ ¶
∂4w ∂4w ∂4w 

D + 2  + = q (x, y) (156)
∂x4 ∂x2∂x2 ∂y4 

Alternative notation can be: 

D ∇4 w = q (157) 

where Laplacian ∇2 w reads: 

2 ∂2w ∂2w ∇ w = 
∂x2 + 

∂y2 (158) 

and bi-Laplican ∇4w reads: ¡ ¢ 
∇4 w =∇2 ∇2 w (159) 

∂2 ¡ ¢ ∂2 ¡ ¢
2 2 = w + w 

∂x2 ∇ ∂y2 ∇

∂2 µ∂2 ∂2
¶ 

∂2 µ∂2 ∂2
¶

w w w w 
= + + + 
∂x2 ∂x2 ∂y2 ∂y2 ∂x2 ∂y2 

∂4w ∂4w ∂4w 
= + 2  + 

∂x4 ∂x2∂x2 ∂y4 

4.1.2 Reduction to a System of Two Second Order Equations 

Denote 
D w,αα = −M (160) 

Then, from the equilibrium equation: 

[D w,αα ] ,ββ = q (161) 

we obtain a system of two linear partial differential equations of the second order: 

M,ββ = −q (162)
D w,αα = −M 
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or 

What is "M" ?  

( 
∂2M 
∂x2 + ∂

2M 
∂y2 = −q 

D 
³ 
∂2w 
∂x2 + ∂

2w 
∂y2 

´ 
= −M 

Let us  calculate  Mαα: 

(163) 

Mαα = M11 + M22 

= D [(1 − ν) κ11 + ν (κ11 + κ22) δ11] 

+D [(1 − ν) κ22 + ν (κ11 + κ22) δ22] 

= D [(1 + ν) (κ11 + κ22)] 

= D (1 + ν) καα 

(164) 

or 

Therefore, 

Mαα 

1 +  ν 
= D καα = −D w,αα = M (165) 

Mαα = M (1 + ν) 

= D καα (1 + ν) 

(166) 

Now, moment sum reads: 

M = D καα (167) 

and in expanded notation it reads:  

M = D [κxx + κyy] (168) 

4.1.3 Exercise 1: Plate Solution 

Consider a simply supported plate. 

( )Square plate a a× 

x 

a 

a 

y 
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Boundary Condition General boundary condition reads: 

¯
¡
M¡nn − Mnn¢¢ w,n = 0  on Γ 

(169)
Vn − V̄n w = 0  on Γ 

M̄nn = 0  Mnn = 0  on Γ⇒ 
(170)

w = 0  on Γ 

w = 0  at x = 0  and x = a , 0 ≤ y ≤ a 
w = 0  at y = 0  and y = a , 0 ≤ x ≤ a 

(171) 

Mxx = 0  at x = 0  and x = a , 0 ≤ y ≤ a 
(172)

Myy = 0  at y = 0  and y = a , 0 ≤ x ≤ a 

Loading Condition Assume for simplicity the sinusoidal load distribution: ³ π x  ́ ³ π y  ́  
q (x, y) =  q0 sin sin (173) 

a a 

where q0 is a pressure intensity. 

Solution of Problem The solution of the form ³ ´ ³ ´ 
w (x, y) =  w0 sin 

π x  
sin 

π y  
(174) 

a a 

satisfy both the boundary conditions and the governing equations (see below). 

Plate Bending Equation Substituting Eq. (173) and (174) into the plate bend-
ing equation (156), one gets: ½ ∙³ π ́  4 ³ π ́  4 ³ π ́  4¸ ¾ ³ π x  ́ ³ π y  ́  

D w0 + 2  + − q0 sin sin =0  (175) 
a a a a a ½ ³ π ́  4 

¾ ³ π x  ́ ³ π y  ́  
4 D w0 − q0 sin sin =0  

a a a 

In order to satisfy the above equation for all values of x and y, the  coefficient in 
the bracket must vanish. This gives: 

w0 = 
q0 

³ a ́  4 
(176)

4 D π 

where D = 
¡
Eh3 

¢ 
/ 
£ 
12 
¡
1 − ν2

¢¤
. 

Bending Moments The various bending moments are given by: 

∂2w ∂2w ³ π ́  2 ³ π x  ́ ³ π y  ́  
Mxx = −D 

∙ 

∂x2 + ν 
∂y2 

¸ 

= D (1 + ν) 
a

w0 sin 
a 

sin 
a 
(177) 

∂2w ∂2w ³ π ́  2 ³ π x  ́ ³ π y  ́  
Myy = −D 

∙ 

∂y
+ ν 

∂x

¸ 

= D (1 + ν) 
a

w0 sin 
a 

sin 
a2 2 

∂2w ³ π ́  2 ³ π x  ́ ³ π y  ́  
Mxy = −D (1 − ν) 

∂x∂y 
= −D (1 − ν) 

a
w0 cos 

a 
cos 

a 
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Shear Components The shear components Qx and Qy are: 

Qx = 
∂Mxx 

+ 
∂Mxy (178)

∂x ∂y 
∂Myy ∂Mxy

Qy = + 
∂y ∂x 

Now, using the previously obtained bending moments, we get the shear components 
in the interior of the plate: ³ π ́  3 ³ π x  ́ ³ π y  ́  

Qx =2  D w0 cos sin (179) 
a a a³ π ́  3 ³ π x  ́ ³ π y  ́  

Qx =2  D w0 sin cos 
a a a 

Effective Shear Components Next, let us computer the effective shear com-
ponents: 

Vx = Qx + 
∂Mxy (180)
∂y 

∂Mxy
Vy = Qy + 

∂x 

Using the previous results, we get: ³ π ́  3 ³ π x  ́ ³ π y  ́  
Vx = (3  − ν) D w0 cos sin (181) 

a a a³ π ́  3 ³ π x  ́ ³ π y  ́  
Vy = (3  − ν) D w0 sin cos 

a a a 

We now need to evaluate the effective shear on the boundaries: 

x = 0  
x = a 
y = 0  
y = a 

h i 
Vx/ (3 − ν) D π 

a 

w0 sin 
¡π y  ¢

¡ ¢3 

¡a ¢π y−w0 sin a 
0 
0 

Because our sign convention is: 

h i¡ ¢3
Vy/ (3 − ν) D π

a 

0 
(182)0 ¡¡ ¢¢ π x  w0 sin a


−w0 sin π x 

a 

positive shear 

x 

z 
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in our case, shear along the boundary is: 

x 

y 

From the above results, we can plot the shear distribution: 

x 

y 

Force Balance Integrating the effective shear along the boundary, we get: 

π 

R = 
Z 

L 
Vn dxt = 4  

Z a 

0 
Vx|x=0 dy = 4  (3− ν) D 

³ π ́  3 

a 
w0 

Z a ³ π y  ́  

0 a 
sin dy (183) 

Then, the reduction force due to effective shear on boundaries reads: 

R = 2  (3− ν) q0 
¡ ¢2a 
π 

(184) 

Now, let us complete the total load acting on the plate: 

P = 
Z 

q (x, y) dS = 
Z a Z a 

q0 sin 
³ π x  ́  

sin 
³ π y  ́  

dx dy (185) 
S 0 0 a a 

Then, the total external load acting on the plate reads: 

P = 4 q0 
¡ 
a 
¢2 (186) 

Notice that R and P do not balance! We did not include the corner forces. These 
are given by: 

(Fcorner)x0,y0 
= 2  (Mxy)| (187)x=x0,y=y0 
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Because of the symmetry, all four forces are equal. So, compute the corner force 
at x = y = 0, (Fcorner)0,0: h ³ π x  ́ ³ π y´i¯̄ 

(Fcorner)0,0 =2  cos cos ¯ (188) 
a a 0,0 ³ π ́  2 

= − 2 D (1 − ν) w0 
a 

Now, the vertical force balance is satisfied: 

R+ 4  Fcorner = P (189) 

³ a ́  2 ³ π ́  2 ³ a ́  2 
2 (3  − ν) q0 

π 
− 8 D (1 − ν) 

a
w0 =4  q0 

π 
(190) ³ a ́  2 ³ π ́  2 ³ a ́  2 

2 (3  − ν) q0 − 2 (1  − ν) q0 =4  q0
π a π 

4.1.4 Exercise 2: Comparison between Plate and Beam Solution 

Plate Solution For a square simply supported plate under loading qplate (x, y) 
given by: ´ ³ ´³ π x  π y  

qplate (x, y) = (q0)plate sin sin (191) 
a a 

we found that the plate deflection is: ³ π x  ́ ³ π y  ́  
wplate (x, y) = (w0)plate sin sin (192) 

a a 

with: 

(w0)plate =
(q0)plate 

³ a ́  4 
(193)

4 D π ¡ ¢ 
3 1 − ν2 (q0)plate 

³ a ́  4 
= 

E h3 π 

For the plate, the total load is given by: Z a Z a ³ ´ ³ ´ 
Pplate = (q0)plate sin 

π x  
sin 

π y  
dy dx (194) 

0 0 a a ³ a ́  2

=4  (q0)plate
 π 
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Wide Beam Solution For a wide beam under line loading given by: ³ π x  ́  
qbeam (x, y) = (q0)beam sin (195) 

a 
we need to compute the central deflection (w0)beam from: 

E I w0000 = qbeam (x) (196)beam 

where I = ah3/12. Assuming the deflection wbeam (x): ³ π x  ́  
wbeam (x) = (w0)beam sin (197) 

a 
we get: ³ π ́  4 ³ π x  ́ ³ π x  ́  

E I  (w0)beam sin = (q0)beam sin (198) 
a a a 

Thus, 

(q0)beam 
³ a ́  4 

(w0)beam = (199)
E I  π 

12 (q0)beam 
³ a ́  4 

= 
E a h3 π 

Now, let us compute the total forces: Z a ³ π x  ́  
Pbeam = (q0)beam sin dx (200) 

0 a 
a 

=2  (q0)beam π 
Comparison For both total forces to be equal, we need to have: 

Pplate = Pbeam (201) ³ a ́  2 a 
4 (q0)plate π 

=2  (q0)beam π 
a 

(q0)beam = 2  (q0)plate (202)
π 

With a concentrated load, the beam deflection now becomes: 

(q0)beam 
³ a ́  4 

(w0)beam = (203)
E I  π 

24 (q0)plate 
³ a ́  4 

= 
π E h3 π 

We now can compute the ratio of central deflections: 

(w0)plate 
3 (1−ν2) (q0)plate 

¡ 
a 
¢4 

α= 

π ¡ 2
¢ 
= E h3 ¡ ¢4 

π (204)
(w0)beam 24 (q0)plate a 

π E h3 π 

= 1 − ν ' 0.36 
8 

The above equation means that under the same total load, a plate is three times 
stiffer than a wide beam. The ratio α will vary slightly depending on the load 
distribution (sinusoidal, uniform, concentrated load, etc.). 
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4.1.5	 Exercise 3: Finite Difference Solution of the Plate Bending Prob-
lem 

Governing Equations read: 
∇
2

2M = −
M 
q 

(205)∇ w = −D 

or in the component notation they read: 

∂2M ∂2M 
∂x2 + ∂y2 = −q 
∂2w ∂2w M (206) 
∂x2 + ∂y2 = −D 

where M is the moment sum defined by: 

M = 
Mαα 

= D καα	 (207)
1 + ν 

Case of Simply Supported Plate The boundary condition of a simple sup-
ported plate reads: 

w =0  on Γ	 (208) 

Mnn =0  on Γ 

x 

y 

a 

a 

n 

For sides parallel to x-axis (thick lines), one gets: 

Mnn =Myy = 0  (209) 

w = 0  → 
dw 
dx 

= 0  → 

From the general constitutive equations, 

d2w 
dx2 = 0  → κxx = 0  (210) 

Therefore, 

Myy =D [κyy + ν κxx] 

0=D [κyy + ν · 0] → κyy = 0  

M = D [καα + κββ] = D [0 + 0] = 0 

(211) 

(212) 
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Similar derivation can be performed for two edges parallel to y-axis. Then, M = 
0. It can be concluded that for a simply supported plate the following boundary 
conditions hold: (

(


∂2M ∂2M 
∂x2 + ∂y2 = −q in S 

(213)
M = 0  on Γ 

∂2w ∂2w M 
∂x2 + ∂y2 = −D in S 

(214) 
w = 0  on Γ 

Therefore, the above two boundary value problems are uncoupled. 

The Finite Difference Technique An approximation to the first and second 
derivatives. 

z 

zn+1 

zn

h 
x xn xn+1 

,n m  1n+1n− 

1m+ 

1m− 

h 

x 

y 

backward dz


¯̄̄̄
 

¯̄̄̄
 
n dx h


' 
zn − zn−1 (215) 

dz
 ' 
zn+1 − zn 

forward  

dx n+1 h 
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∙

d2z
 d dz


¯̄̄̄



¸


(216)
=

dx2 dx dx
n ¢
 ¢
¡


dz 
dx

¡

dz 

n+1 −
h


dx n =


= 
zn+1−zn − zn−zn−1 

h h 

h 
zn+1 − 2 zn + zn−1 

= 
h2 ¯̄̄̄



d2z

dy2 =


zm+1 − 2 zm + zm−1 

h2 (217)

m 

∂2z ∂2z ∇2 z = 
∂x2 + 

∂y2 (218) 

1 
= 
h2 (zn+1 − 2 zn + zn−1 + zm+1 − 2 zm + zm−1) 

0 Right 

Top 

h 

h 

h h 
Left 

Bottom 

12∇ z = 
h2 (zT + zB + zL + zR − 4 z0) (219) 

Divide the plate into sixteen identical squares and distinguish six representative 
nodes: three in the interior and three at the boundary. Because of symmetry, it is 
enough to consider only an eighth of the plate. 
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6 5 4


a 
1 

23 

h = 
a 
4 

a 

Four axes of symmetry 

Determination of Moment For each interior point  (1, 2, 3), we write equation 
∇2M = −q. For each boundary point (4, 5, 6), we write boundary condition 
M = 0 (uniform pressure). 

Point 1: 4 M2 − 4 M1 = − 
q a2 

16 
(220) 

Point 2: M1 +M4 + 2 M3 − 4 M2 = − 
q a2 

16 

Point 3: 2 M5 + 2 M2 − 4 M3 = − 
q a2 

16 
Point 4: M4 = 0  

Point 5: M5 = 0  

Point 6: M6 = 0  
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Substituting three last equations of Eq. (220) into the first three equations of Eq. 
(220), one ends up with the following system of linear algebraic equations: 

2 
4 M 1 

q a
2 − 4 M = − 16 

q aM1 + 2  M3 − 4 M2 = − 16 

2 
(221) 

2 
2 M2 − 4 M = − q a

3 16 

whose solution is: 

M1 =
9 

q a  2 (222)
128 

M2 =
7 

q a  2 

128 
11 2M3 = q a
256 

At the plate center, Mxx = Myy so that: 

M = 
Mxx + Myy 

=
2 Mxx (223)

1 +  ν 1 +  ν 

1 
Mxx = (1 + ν) M (224)

2 
At the center, M = M1, thus,  

1 
Mxx = (1 + ν) M1 (225)

2 
1 9 2 = (1 + ν) q a
2 128 

=0.0457 q a  2 

This is 4.6% less than the exact solution which is (Mxx)exact = 0.0479 q a2 from 
the text book. 

Determination of Deflection For each interior point  (1, 2, 3), we write equation 
2∇ w = −M/D. For each boundary point (4, 5, 6), we write boundary condition 

w = 0. 

M a2 µ 
9 qa2 ¶ 

a2 

Point 1: 4 w2 − 4 w1 = − 
D 
1 

16 
= − 

128 D 16 
(226) 

2 µ 
2 ¶ 

2 

Point 2: w1 + w4 + 2  w3 − 4 w2 = − 
M2 a

= − 
7 q a a

D 16 128 D 16 

M3 a
2 µ 

11 q a2 ¶ 
a2 

Point 3: 2 w5 + 2  w2 − 4 w3 = − 
D 16 

= − 
256 D 16 

Point 4: w4 = 0 


Point 5: w5 = 0 


Point 6: w6 = 0 
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Similarly,
9 qa4 

4 w2 − 4 w1 = −2048 D


w1 + 2  w 7 q a4 
(227)
3 − 4 w2 = −2048 D 

11 q a4 
2 w2 − 4 w = −4096 3 D 

Finally, the finite difference solution is: 

33 q a4 q a4 

w1 = = 0.00403	 (228)
8196 D D 
3 q a4 q a4 

w2 = = 0.00293 
1024 D D 
35 q a4 q a4 

w3 = = 0.00214 
16384 D D 

On the other hand, the exact deflection of the center point is: 

4 

(w1)exact = 0.00416 
q a 	

(229)
D 

Thus, the error of the finite different solution is 3.1%. 

4.2 Membrane Theory of Plates 

4.2.1 Plate Membrane Equation 

Assume that the bending rigidity is zero, D = 0. The plate becomes now a 
membrane. 

•	 Equilibrium of in-plane equation 

Nαβ ,α = 0  on S (230) 

Equilibrium of out-of-plane equation 

Nαβ w,αβ +q = 0  on S (231) 

• Strain-displacement relation 

1	 1 
ε◦ = (uα, α,β ) +  w,	 w, (232)αβ β +u α β

2	 2 

• Constitutive equation £	 ¤
Nαβ = C (1 − ν) ε◦ ◦ δαβαβ + ν εγγ (233) 

where C = Eh/
¡
1 − ν2 

¢ 
. 

This is a non-linear system of equation which is difficult to solve. Note that 
corresponding system of equation for the plate bending was linear. 
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4.2.2 Plate Equation for the Circular Membrane 

Cylindrical coordinate system is composed of ur, uθ, uz = w. 

• Equilibrium of in-plane equation 

r 
∂Nrr 

+Nrr − Nθθ = 0  on S (234)
∂r 

Equilibrium of out-of-plane equation ∙ ¸
∂ ∂w 

Nrr r + r q  = 0  on S (235)
∂r ∂r 

• Strain-displacement relation µ ¶2∂ur 1 ∂w 
λrr = + (236)

∂r 2 ∂r 
ur

λθθ = 
r 

• Constitutive equation 

Nrr =C [λrr + ν λθθ] (237) 

Nθθ =C [λθθ + ν λrr] 

where C = Eh/
¡
1− ν2 

¢ 
. 

4.2.3 Example: Approximation Solution for the Clamped Membrane 

Consider a circular plate with the clamped support. 

q 

r a 

( )w r  

0w 
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Membrane Solution From the symmetry and clamped boundary condition, the 
radial displacement ur reads: 

ur (r = 0)= 0  (238) 

ur (r = a) = 0  

Thus, as a first approximation, it is appropriate to assume: 

ur ≡ 0 for 0 ≤ r ≤ a (239) 

Then, the hoop strain vanishes: 
εθθ = 0  

Now, the radial force and the radial strain component become: 

Nrr = C εrr (240) 

εrr = 
1 
2

µ
∂w 
∂r 

¶2 

(241) 

With the assumption ur = 0, the in-plane equilibrium equation can not be satisfied. 
Consider out-of-plane equilibrium equation only. Substituting Eq. (240) and 

(241) into Eq. (235), one gets: " # 
∂ C 

µ
∂w
¶2 ∂w 

r = − r q  on S (242)
∂r 2 ∂r ∂r 

Integrating both sides once with respect to r reads: µ ¶3C ∂w r2 q 
r = − + c1 (243)

2 ∂r 2 

At the center of the membrane, the slope should be zero. Thus, one gets: 

∂w 
= 0  at r = 0  (244)

∂r 
c1 = 0⇒ 

Then, Eq. (243) can be written: r 
∂w 

3 q r  
= − (245)

∂r C 

Integrating the above equation again reads: r 

w = −
4

3 
3 

C

q 
r 4/3 + c2 (246) 
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The integration constant c2 can be determined from the zero deflection condition 
at the clamped edge: 

w = 0  at r = a	 (247) r 
3 

3	 q 4/3 ⇒ c2 =
4 C

a 

Recalling the definition of the axial rigidity C = Eh/
¡
1 − ν2 

¢ 
, Eq. (246) can be 

put into a final form: r 
w 
=
3 3 (1 − ν2) q a  

∙ 

1 − 
³ r ́  4/3¸ 

(248) 
a 4 E h  a r ∙ ¸
' 0.73 3 q a  

1 − 
³ r ́  4/3

E h  a 

In particular, the central deflection w (r = 0)  =  w0 is related to the load intensity 
by: r 

w0 q a
= 0.73 3	 (249) 

a E h  

Bending Solution It is interesting to compare the bending and membrane re-
sponse of the clamped circular plate. From the page 55 of Theory of Plates and 
Shells (2nd Ed.) by Timoshenko and Woinowsky-Krieger, the central deflection of 
the plate is linearly related to the loading intensity: 

3w0 q a
=	 (250) 

a	 64 D 
3 
¡
1 − ν2 

¢ 
q ³ a ́  3 

= 
16 E h³ ´ 3q a ' 0.17 
E h 

Assume that a/h = 10, then Eq. (250) yields: 

w0 q a
= 17 	 (251) 

a E h  

Comparison A comparison of the bending and membrane solution is shown in 
the next figure. 
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It is seen that a transition from the bending to membrane response occurs at 
w0/a = 0.15 which corresponds to w0 = 1.5 h. When the plate deflection reach 
approximately plate thickness, the membrane action takes over the bending action 
in a clamped plate. If the plate is not restrained from axial motion, then the 
assumption ur = 0 is no longer valid, and a separate solution must be developed. 

4.3 Buckling Theory of Plates 

4.3.1 General Equation of Plate Buckling 

•	 Equilibrium of in-plane equation 

Nαβ ,α = 0  on S (252) 

Equilibrium of out-of-plane equation 

Mαβ,αβ +Nαβ w,αβ +q = 0  on S (253) 

• Strain-displacement relation 

1	 1 
ε◦ = (uα,β +uα,β ) +  w,α	 w,β (254)αβ 2	 2 
καβ =− w,αβ 

• Constitutive equation for axial force and axial strain 

Nαβ = C 
£ 
(1− ν) εαβ

◦ + ν ε◦	 δαβ
¤ 

(255)γγ 

where C = Eh/ 
¡
1− ν2 

¢ 
, and another one for moment and curvature 

Mαβ = D [(1− ν) καβ + ν κγγ	 δαβ ] (256) 

where D = Eh3/ 
£ 
12
¡
1− ν2

¢¤
. 
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By combining Eq. (254) and (256), one gets: 

Mαβ ,αβ = −D w,ααββ (257) 

Substituting Eq. (257) into Eq. (253) leads: 

−D w,ααββ +Nαβ w,αβ +q = 0  on S (258) 

The buckling problem is specified by: 

q ≡ 0 (259) 

Now, changing signs leads the general out-of-plane equation for the buckling of 
the plates: 

(260)D w,ααββ −Nαβ w,αβ = 0  

where the second term in the left hand is non-linear due to Nαβ which should be 
obtained from: 

Nαβ,α = 0  (261) 

4.3.2 Linearized Buckling Equation of Rectangular Plates 

The nonlinear buckling equation can be separated into two linear equations: one 
for in-plane equation for Nαβ and another one for w. 
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a x 

y 

b 

xPxP 

xu 

Px

2 
k 

Post-buckling 
(δw ≠ 0) 

Pc

Pre-buckling 
(δw = 0) 

k 
ux

Pre-Buckling Problem Recall that: µ ¶
1 ∂uα ∂uβ 1 ∂w ∂w 

ε◦ = + + (262)αβ 2 ∂xβ ∂xα 2 ∂xα ∂xβ 

Eh £ ¤
Nαβ =

1− ν2 (1− ν) ε◦ γγ δαβ (263)αβ + ν ε◦

In the pre-buckling problem, the linear equilibrium equations are obtained by 
omitting the nonlinear terms in the governing equations Eq. (260) and (261). The 
resulting equations are now: 

D w,ααββ = 0 


Nαβ ,β = 0 


For the pre-buckling trajectory, δw = 0, one gets the equilibrium equation:


Nαβ ,β = 0  (264) 
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where 
Eh £
 ¤


(265)
Nαβ = (1− ν) εαβ
◦ + ν ε◦ δαβ

1− ν2 γγ ¶
µ

¢

1
 ∂uα ∂uβ (266)
ε◦αβ =
 +

2
 ∂xβ ∂xα

and boundary condition: 

Nnn − 

Here, it is assumed that the unknown membrane force tensor Nαβ 

the similar quantity known from the pre-buckling solution N◦ :αβ

Nαβ = −N◦
αβ 

where the compressive pre-buckling membrane force are defined as positive. 

Post-Buckling Problem Now, the governing equation for buckling of plates 
reads: 

Boundary
w + N◦ = q + (268)D ∇4 

αβ w,αβ Conditions 

¡

where membrane force tensor in the pre-buckling solution N◦ is defined as: αβ 

N̄nn (267)
δun = 0  on Γ 

is equal to 

N◦ = λαβ Ñαβ = λ


¯̄̄̄


Ñxx Ñxy 

Ñyx Ñyy 

¯̄̄̄

 (269)


where N̄αβ is the known direction from the pre-buckling analysis, and η is unknown 
load amplitude. Now, the nonlinear buckling equation becomes a linear eigenvalue 
problem: 

D ∇4w + λ Ñαβ w,αβ = 0  (270) 

where λ ≥ 0 is eigenvalues, and w is eigenfunctions. 

4.3.3 Analysis of Rectangular Plates Buckling 

Simply Supported Plate under In-Plane Compressive Loading Consider 
a plate simply supported on four edges. The plate is subjected to an in-plane 
compressive load Px uniformly distributed along the edges x = [0, a]. 
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a x 

b 

xPxP 

y 
h 

From equilibrium equations, one gets: 

N◦ = αβ 

¯̄̄̄



¯̄̄̄



N◦ N◦
xx xy (271)
¯̄̄̄
 

N◦ N◦
yx yy ¯̄̄̄



Ñxx Ñxy=λ
 ¯̄̄̄

 

¯̄̄̄
 

Ñyx Ñyy 

Px 1 0 

=


b
 0 0 


Introducing Eq. (271) into Eq. (268) leads: 

D ∇4 w + 
P

b 
x 
w,xx = 0  (272) 

Boundary condition for this simply supported plate are written as: 

w =0  on Γ (273) 

Mnn =0  on Γ 

where the moment components read: 

Mxx =−D (w,xx +ν w,yy ) = 0  (274) 

Myy =−D (w,yy +ν w,xx ) = 0  

Thus, one gets: 

w =w,xx = 0  on x = [0, a] (275) 

w =w,yy = 0  on x = [0, b] 

Equation (272) is a constant-coefficient equation, and a solution of the following 
form: ´³´³ 

w = c1 sin 
m π  x  

a 
sin 

n π  y  
b 

for m, n = 1, 2 (276) 
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satisfies both the differential equation and the boundary conditions. Introduction 
into Eq. (272) gives: ∙³ m π  ́  4 ³ m π  ́  2 ³ n π  ́  2 ³ n π  ́  4¸ 

Px 
³ m π  ́  2 

D
a 

+ 2  
a b 

+ 
b 

− 
b a 

= 0  (277) 

³ ´ 2 
∙³ ´ 2 ³ ´ 2¸2Px π a m n 

= D + (278)⇒ 
b m a b 

where for the discrete values of Px Eq. (272) has nontrivial solutions. The critical 
load can be determined by the smallest eigenvalue, i.e. n = 1 for all values of a: " # 

Px 
³ π a  ́  2 ³ m ́  2 

µ
1
¶2 

=D + (279)
b m a bµ ¶2 

"³ µ ¶2 
# 

π2 D a b  m ́  2 1 
= +

b2 m a bµ ¶2π2 D m b  a 
= + 

b2 a m b

Now, the critical load (Px)cr can be written as: 

π2 D 
(Px)cr = kc b 

(280) 

where µ ¶2m b  a 
kc = + (281) 

a m b

where coefficient kc is a function of aspect ratio a/b and wavelength parameter m. 
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2 6 12 

For a given a/b, m may be chosen to yield the smallest eigenvalue. In order to 
minimize kc in Eq. (281), treating m as a continuous variable produces: µ ¶µ ¶

∂kc m b a b a

∂m 

= 2
a 
+ 

m b a 
− 

b m2 = 0  (282)


where the first bracket can not be zero, so the second bracket should be zero: 

b a 1 ⇒ 
a 
− 

b m2 = 0 	 (283) 

Now, one gets: 

a 
m = 

(284)b 
kc = 4  

Here, this is valid  when  a/b is integer and when considering a very long plates. 
Transition from m to m+1 half-waves occurs when the two corresponding curves 

have equal ordinates, i.e. from Eq. (281): 

kc|m = kc|m+1	 (285) 

m b  a (m + 1)  b a ⇒	
a 
+ 

m b  
= 

a 
+
(m + 1)  b 

(286) 

a p
⇒	

b 
= m (m + 1)  
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a 
=
p
m (m + 1)  (287)

b 

Example 1 For m = 1, a/b =
√
2 

Example 2 For a very large m, i.e. a very long plate, a/b ' m. Thus,  kc = 4  is 
now independent of m. 

A very long plate buckles in half-waves, whose lengths approach the width of the 
plate: ³ π x  ́ ³ n π y  ́  

w = c1 sin sin 
b b 

Thus, the buckled plate subdivides approximately into squares. 

Various Boundary Conditions of Plate under In-Plane Compressive Load-
ing The critical buckling load reads: 

π2 D 
(Px)cr = kc 

b 

0 
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4 

6 

8 

10 

12 

14 

16 

c 

C 

c c 

c 

A 

D 

E 

B 

ss 
ss 

ss 

ss 

free 

free 

Loaded edges simply supported. 
Loaded edges clamped. 

kc 

0 1 2 3 4 5 
a 
b 

Figure by MIT OCW. 

Influence of boundary conditions on the buckling coefficients of 
plates subjected to in-plane compressive loading 
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where the dimension of Nxy is [N/m].

Various Boundary Conditions of Plate under In-Plane Shear Loading 
The critical buckling load per unit length reads: 

π2 D 
(Nxy)cr = kc 

b2 

15 

�2D

13 

rcr = 
b2

h 
kc


Clamped Edges

11


kc 9 

Simply Supported Edges 

7 

5 

3

0 1


a

b


2 3 4 5 

Critical values of shear stress for plates subjected to in-plane loading. 

Figure by MIT OCW. 

Limiting Case: Wide Plates Consider a wide plate for which a/b 1. From  ¿
the diagram, we see that if a/b < 1, then  m is set to be equal to unity, i.e. just one 
wavelength in the x-direction. 
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a 
x 

b y 

The buckling formula thus becomes: 

π2 D 
(Nx)cr = kc|m=1 b2 

π2 D 
µ 
b a

¶2 

(288) 

= 
b2 a 

+ 
b 

π2 D ³ a ́  2 
µ 
b a

¶2 

= 
a2 b a 

+ 
b ∙ ³ ¸2π2 D ´ 2a 

= 1 +  
a2 b 

If a/b 1, then the second term in the bracket can be neglected so that the ¿
buckling load per unit length becomes: 

π2D 
(Nx)cr = 2a

which is called Sezawa’s formula for wide plates. 

Example 3 Here, relative merits of stiffening a  large panel  are investigated in the 

longitudinal or in the transverse direction. It is assumed that the stiffeners provide

for a simply supported boundary conditions.

Consider the case of longitudinal stiffeners.
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L


crσ 

s 

From the von Karman formula, the buckling load per unit length for each divided 
part reads: 

4π2D 
(Nx)cr = 

s2 

Now, the buckling stress can be calculated: 

(Nx)cr(σcr)longitudinal = 
h 

4π2D 
= 

s2h 

Consider  the case of  transverse  stiffeners. 

L 

crσ s 

From the Sezawa’s formula, the buckling load per unit length along the loaded edges 
reads: 

π2D 
(Nx)cr = 

2s
Now, the buckling stress can be calculated: 

(Nx)cr(σcr)transverse = 
h 

π2D 
= 

2hs

Thus, it is concluded that 

(σcr)longitudinal = 4  (σcr)transverse 

This shows advantages of longitudinal stiffeners over transverse stiffeners. 
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4.3.4 Derivation of Raleigh-Ritz Quotient 

Recall the total potential energy of system and other corresponding definitions: 

Π = (Ub − Vb) + (Um − Vm) (289) 

where each term for buckling problems will be discussed in the following. 

Term Relating to Plate Bending Response In the buckling problem, the 
work done by external load causing bending response considered as zero: 

Vb = 0  (290) 

The bending energy can be expressed: Z 
1 

Ub = Mαβ καβ dS (291)
2 SZ 
D 

=
2 S 

[(1− ν) καβ + ν κγγ δαβ] καβ dS Z h iD 2 =
2 S 

(1− ν) καβκαβ + ν (κγγ ) dS Z h iD 2 = (1− ν) (κ11κ11 + κ12κ12 + κ21κ21 + κ22κ22) + ν (κ11 + κ22) dS 
2 ZS n h ioD 2 2 = (κ11 + κ22) − 2 (1− ν) κ11 κ22 − (κ12) dS 
2 S 

Here, the term in the square bracket is called Gaussian curvature: 

κ11 κ22 − (κ12)
2 = κI (292)κII  

where κI and κII  are the principal curvatures. For plates with straight edges, 
Gaussian curvature vanishes, so one gets: Z 

Ub = 
D 

(κ11 + κ22)
2 dS (293)

2 S 

The integrand of the above equation can be written in terms of the transverse 
displacement: 

2 ¡
2 ¢2 

(κ11 + κ22) = −∇ w (294) 
2 2 =∇ w ∇ w 

Now, the bending energy reads: Z 
Ub = 

D 
2 S 

∇2 w ∇2w dS  (295) 
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Term Relating to Plate Membrane Response The work done by external 
load causing membrane response reads: Z Z 

Vm = N̄nn un dl + N̄tn ut dl (296) 
Γ Γ 

In the buckling problem, the axial force N◦ = λ ˜ is determined from the αβ Nαβ 

pre-buckling solution and is considered as constant, so the membrane energy reads: Z 
Um =−λ Ñαβ ε

◦ dS (297)αβ 

=−λ 
ZS 

Ñαβ 

∙ 
1
(uα,β +uα,β ) +  

1 
w,α w,β 

¸ 

dS 
2 2 ZS Z 

=−λ Ñαβ uα,β dS − 
λ

Ñαβ w,α w,β dS 
2S S 

Here, the first term can be extended in a similar way shown in Eq. (132): Z Z ³ ´ 
−λ Ñαβ uα,β dS =−λ Ñnn un + Ñtn ut dl (298) 

S ΓZ 
−λ Ñαβ,β uα dS ZS ³ ´ 

=−λ Ñnn un + Ñtn ut dl 
Γ 

where the in-plane equilibrium is applied: 

−λ Ñαβ ,β = 0  (299) 

Now, the membrane energy can be expressed: Z ³ ´ Z 
Um = −λ Ñnn un + Ñtn ut dl − 

λ
Ñαβ w,α w,β dS (300)

2Γ S 

Thus, the term relating to membrane response can be summarized: Z ³ ´ Z 
Um − Vm =−λ Ñnn un + Ñtn ut dl − 

λ
Ñαβ w,α w,β dS (301) Z Γ Z 

2 S 

¯ ¯− Nnn un dl − Ntn ut dl Z ³ 
Γ ´ 

Γ Z ³ ´ 
= −λ Ñnn − N̄nn un dl − −λ Ñtn − N̄tn ut dl 

Γ ΓZ 
λ − 
2 

Ñαβ w,α w,β dS
ZS


λ 
=− Ñαβ w,α w,β

2 S 

where the boundary conditions on Γ are applied. 
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Total Potential Energy and Its Variations Now, one gets the total potential 
energy: 

Π =(Ub − Vb) + (Um − Vm)	 (302)Z	 Z 
= 
D 
2 S 

∇2 w ∇2w dS  − 
λ 
2 S 

Ñαβ w,α w,β dS 

The first variation of the potential energy can be obtained: Z 
2 2 2δΠ = 

D 
2	 S 

£ 
δ 
¡
∇ w 

¢ 
∇ w +∇2w δ  

¡
∇ w

¢¤ 
dS (303) Z 

λ − 
2 S 

Ñαβ (δw,α w,β +w,α δw,β ) dS Z	 Z 
2 =D ZS 

∇2w δ  
¡
∇ w 

¢ 
dS −Z 

λ 
S 
Ñαβ w,α δw,β dS 

=D 
S 
∇2 w ∇2δw dS − λ 

S 
Ñαβ w,α δw,β dS 

where Ñαβ is considered as constant under the variation. Similarly, the second 
variation of the potential energy reads: Z	 Z 

δ2Π =D	
S 
δ 
¡
∇2 w 

¢ 
∇2δw dS − λ 

S 
Ñαβ δw,α δw,β dS (304) Z	 Z 

D ∇2δw ∇2δw dS − λ Ñαβ δw,α δw,β dS 
S S 

Raleigh-Ritz Quotient Application of the Trefftz condition for invertability, 
δ2Π = 0, determines the load intensity: R 

λ = R D S ∇
2δw ∇2δw dS 

(305)
Ñαβ δw,α δw,β dSS 

Here, choose a trial function for w: 

w = A φ 	 (306) 

where A is the undetermined magnitude, and φ = φ̂ (x, y) is a normalized shape 
function. Then, the variation of the trial function reads: 

δw = δA φ	 (307) 

Now, the load intensity reads: R 
λ = R D	 ∇2 (δA φ) ∇2 (δA φ) dS 

(308)S 

Ñαβ (δA φ) ,α (δA φ) ,β dSS R 
D δA ∇2φ δA  ∇2φ dS  

= R S 

S Ñαβ δA φ,α δA φ,β dS R 
= R D ∇2φ ∇2φ dS  S 

Ñαβ φ,α φ,β dSS 

64




4.3.5 

The Raleigh-Ritz quotient is defined as: 

λ = 
D ∇2φ ∇2φ dS  S 

Ñαβ φ,α φ,β dSS 

R R (309)


Example 4 As a special case, consider 1-D case: 

1 0  ̄̄̄¯ ¯̄̄̄
Ñαβ = 

0 0 


then, the Raleigh-Ritz quotient becomes: R

2φ ∇2φ dS  D
 S ∇

(φ,x )
2 dSS 

Rλ =


¯̄̄̄
 

¯̄̄̄
 

Example 5 Similarly, consider 2-D compression case: 

1 0  
Ñαβ = δαβ = 

0 1 


then, the Raleigh-Ritz quotient becomes: R

2φ ∇2φ dS  D
 S ∇R
λ =


φ,α φ,α dSS R

2φ ∇2φ dS  i D
 S ∇h=
R


(φ,x )
2 + (φ,y )

2 dSS 

Ultimate Strength of Plates 

The onset of buckling stress σcr does not necessarily means the total collapse of the 
plate. Usually, there is redistribution of stresses, and the plate takes additional 
load until the ultimate strength σu is reached. 

Von Karman Analysis of the  Effective Width For a simply supported plate, 
the buckling load is: 

Pcr = 
4π2D 
b 

(310) 

4π2E h3 

= 
12 (1− ν2) b 

and the corresponding buckling stress is: 

Pcr
σcr = (311)

bh ¶2 

¶2 

=

4π2E

µ
µ

h

b
12 (1− ν2)

π2E h

=

3 (1− ν2) b
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The normalization of buckling stress by the yield stress reads: 

σcr 

σy 
= 

π2 

3 (1  − ν2) 
E 
σy 

µ
h 
b 

¶2 

(312) 

(1.9)2 

= 
σy 
¡ 
b 
¢2 

E h 

µ ¶2 
σcr = 

1.9 (313)
σy β 

where β is a non-dimensional parameter defined by: r 
σy b 

β = (314)
E h 

The relation between the normalized buckling stress versus β is plotted in the next 
figure. 

1.9 

On further loading the plate beyond σcr, a greater proportion of the load is 
taken by the regions of the plate near the edge. Von Karman assumed that these 
edge regions, each of the width beff /2, carry the stress up to the yield while the 
center is stress free. 
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σ y( )
σ 

x 

y 

Before Buckling After Buckling 

beff beff 
2 2 

yσ 

( )yσ 

yσ 

b 

Actual Stress von Karman Model 

The edge zones  are at  yield,  i.e.  σcr/σy = 1, but the width of the effective 
portion of the plate is unknown: 

σcr 
= 

(1³ 
.9)2 ´ 2 = 1  (315)

σy σy beff 
E h 

from which one obtains: s 
E 

(316)beff = 1.9 h 
σy 

Taking, for example, E/σy = 900 for mild steel, one gets: 

beff = 1.9
√
900 = 57h (317) 

This is somehow high, but there is not much difference from the empirically deter-
mined values of beff = 40h ∼ 50h. 
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The total force at the point of ultimate load is: 

P = σy beff h (318) 

Now, the average ultimate stress can be calculated: 

P 
σu = (319)

bh 
beff 

= σy 
b 
hp

=1.9 Eσy
b 

The average ultimate stress can be normalized by the yield stress: p
σu 
= 1.9 

h
b Eσy 

(320)
σy σy 

σu 1.9 
= (321)

σy β 

The average ultimate stress is plotted with respect to β in the next figure. 

1.9 

Comparison of the ultimate and buckling load solution is shown in the next 
figure. 
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1.9 

Thick plates yield 
before buckle. 

Thin plates buckle 
before reaching 
ultimate load. 

Under the uniaxial loading, the relation between an applied load and the cor-
responding displacement is schematically shown all the way to collapse in the next 
figure. 

Px

Pu

collapse
or crash 

Px

post-buckling Pcr

ux
pre-buckling y


u
x

Empirical Formulas 

Foulkner correction • 
σu 2 1 
= 

σy β 
− 

β2 

x 

Px

(322) 
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• Gerard (Handbook of elastic stability) Ã s !0.85 
σu gh2 E 
= 0.56 (323)

σy A σy 

where g is the sum of the number of cuts and the number of flanges after the 
cuts, A is the cross sectional area A = bh, and  the  coefficients 0.56 and 0.85 
are empirical constants. 

Example 6 Consider a plate which has one cut and two flanges. 

b 

h 

Then, 
g = 1 + 2 = 3  

Now, Ã s !0.85 
σu 3h2 E 
=0.56 

σy bh σy Ã s !0.85 
h E 

=1.42 
b σy 

1.42 
= 
β0.85 

Modifications in Codes In the original von Karman formula, the effective width 
ratio reads: r 

beff σcr 
= (324)

b σy 

In the ANSI specification, imperfection is considered: r µ r ¶
beff σcr σcr 

= 1 − 0.218 (325)
b σy σy 

In UK specification, the effective width ratio is defined as: " #µr ¶4 −0.2 
beff σcr 

= 1 + 14  − 0.35 (326)
b σy 
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y 

eff 

A comparison of theoretical (von Karman) and experimental 
predictions for the effective width in compressed steel plates 

4.3.6 Plastic Buckling of Plates 

Stocky plates with low b/h ratio will yield before buckling at the point B. After  
additional load, the plate will deform plastically on the path BC until conditions 
are met for the plate to buckle in the plastic range. 

1.9 

B 

A 

C 

Stowell’s Theory for the Buckling Strain Stowell developed the theory of 
plastic buckling for simply-supported square plates loaded in one direction. 
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b x 

b 

thickness  h 
y 

The critical buckling strain εcr was derived by him in the form: 

π2 µ ¶2 h p ih 
εcr = 2 + 1 + 3 (Et/Es) (327)

9 b 

where the tangent modulus Et and the secant modulus Es are defined by: 

dσ σ 
Et = ; Es = (328)

dε ε 

ε 

σ 

yσ 

sE 

tE 

For the materials obeying the power hardening low: µ ¶
ε n 

σ = σr (329)
εr 

where σr and εr are the reference stress and strain. Now, the tangent and secant 
modulus are: 

dσ σr 
µ 
ε 
¶n−1 

Et = = n (330)
dε εr εr µ ¶
σ σr ε n−1 

Es = = 
ε εr εr 
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Substituting these expression back into the buckling equation (327), one gets: 

π2 µh¶2 ¡ ¢ 
εcr = 2 +

√
1 + 3n (331)

9 b 

The exponent n varies usually between n = 0 (perfectly plastic material) and n = 1  
(elastic material). This makes the coefficient 

¡
2 +
√
1 + 3n 

¢ 
vary in the range 

3 ∼ 4. For a realistic value of n = 0.3, the buckling strain becomes: µ ¶2h 
εcr = 3.7 (332)

b 

Having determined εcr, the corresponding buckling stress is calculated from the 
power law. 

Approximate Solution for the Buckling Strain Consider an elastic plane 
stress relation: 

E 
σxx = (εxx + νεyy) (333)

1− ν2 

E 
σyy = (εyy + νεxx)

1− ν2 

Using the solution for the pre-buckling state, i.e. σxx = σcr and σyy = 0 leads: 

E 
σcr = (εxx + νεyy) (334)

1− ν2 

E 
0=  (εyy + νεxx)

1− ν2 

from which one gets: 

εyy =−νεxx (335) 

σcr =Eεxx = Eεcr 

The critical elastic buckling stress is: µ ¶2π2E h 
σcr = kc (336)

12 (1− ν2) b 

So, the corresponding critical elastic buckling strain read: µ ¶2π2 h 
εcr = kc (337)

12 (1− ν2) b 

Equation (337) is more general than a similar expression Eq. (327) given by 
the Stowell theory because it applies to all type of boundary conditions. At the 
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same time, Stowell’s equation was derived only for the simply supported boundary 
conditions. In particular, for kc = 4, Eq. (337) predicts: 

εcr = 3.6

µ
 ¶2h 
(338)

b 

which should be compared with the coefficient 3.7 of Eq. (332) in the Stowell’s 
theory. For a plastic material or very high hardening exponent, the prediction of 
both method are much closer. 

4.3.7 Exercise 1: Effect of In-Plane Boundary Conditions, δw = 0  

No Constraint in In-Plane Displacement Consider no constraint in in-plane 
displacement in y-direction, N◦ = 0.yy 

expansion due to 
Poison's effect 

x 

a 

ayu 

xu 

N DND 

y 

The membrane force tensor reads: ¯̄̄̄



¯̄̄̄



N◦ 0 
N◦ = αβ (339)


0 0 


From the constitutive equation, one gets: 

Eh
 £
 ¤

= 0 = −N◦

yyNyy = ε◦ + ν ε◦yy xx (340)

1− ν2 

ε◦ = −ν ε◦yy =
⇒
 xx 

By applying the geometric equation between strain and the displacement and con-
sidering δw = 0, here, one gets the relation between ux and uy: 

∂uy ∂ux 
= −ν (341)

∂y ∂x 
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Integrating both sides over the plate length leads: ZZ a a∂uy ∂ux 

0 ∂y 
dy =−ν 

0 ∂x 
dx (342) 

uy =−ν ux 

Constraint in In-Plane Displacement Consider a plate fully constrained in 
the y-direction, uy = 0. 

ND = νND yy 

a x 

ND = NDNDND xx 

a 
ux

y 

Consequently, one also gets: 

ε◦ = 
∂uy 

= 0  (343)yy ∂y 

Under the uniform compression, ε◦ reads: xx 

ε◦ = 
∂ux 

= 
ux (344)xx ∂x a 

From the constitutive relation, the membrane forces reads: 

Eh
 £
 ¤
¤

Eh ux 
= −N◦ (345)xxNxx = ε◦ + ν ε◦xx yy =


1− ν2 

Eh 
1− ν2 a 
Eh£
 ux

Nyy = ε◦ + ν ε◦yy xx ν
 = −N◦
yy =


1− ν2 1− ν2 a


Finally, the membrane force tensor reads: 

N◦
αβ =


¯̄̄̄



¯̄̄̄

= λ


¯̄̄̄



¯̄̄̄



N◦ 0xx 1 0 

(346)


0 N◦
yy 0 ν


where 
Eh ux

λ = (347)
1− ν2 a 
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4.3.8	 Exercise 2: Raleigh-Ritz Quotient for Simply Supported Square 
Plate under Uniaxial Loading 

Consider a simply supported square plate subjected to uniform compressive load in 
the x-direction. 

x 

a 

a 

ND ND 

y 

Then, the membrane force tensor reads: ¯ ¯ ¯ ¯ 
N◦ = N◦ ¯̄1 0 ¯̄ ¯̄1 0 ¯̄ (348)αβ ¯0 0¯ = λ ¯0 0¯ 

The plate will deform into a dish, so for the trial function take the following: ³ ´ ³ ´ 
φ = φ̂ (x, y) = sin  

π x  
sin 

π y 	
(349) 

a a 

Now, in order to obtain the load intensity, we first calculate φ,x and ∇2φ : 
π ³ π x  ́ ³ π y  ́  

φ,x = cos sin (350) 
a a ´ a ´ π ³ π x  ³ π y

φ,y =	 sin cos 
a a a 

³ π ́  2 ³ π x  ́ ³ π y  ́  
φ,xx = − sin sin (351) 

a a a³ π ́  2 ³ π x  ́ ³ π y  ́  
φ,yy = − sin sin 

a a a 

= φ,xx +φ,yy (352)∇2φ ³ π ́  2 ³ π x  ́ ³ π y  ́  
= −2 sin sin 

a a a ³ π ́  4 ³ π x  ́ ³ π y  ́  
∇2φ ∇2φ = 4  

a 
sin2 

a 
sin2 

a 
(353) 
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Now, the Raleigh-Ritz quotient is calculated: R 
D R ∇2φ ∇2φ dS  

(354)N◦ = λ = S 

(φ,x )
2 dSS 

= ¡ ¡ ¢4 RR ¡¡ ¢¢ ¡¡ ¢¢ 4D π sin2 π x  sin2 π y  dS a S a a 
π 
¢2 cos2 π x  sin2 π y  dSS a aa³ π ́  2 

=4D 
a 

µ ¶2 
π (355)N◦ = λ = 4Dcr a 

This is the classical buckling solution, and it is exact because of the right guess of 
the displacement field. 

4.4 Buckling of Sections 

4.4.1 Transition from Global and Local Buckling 

Euler buckling load of a simply-supported column reads: 

π2EI 
(Pcr)column = 

l2 (356) 

where I is the bending rigidity of the column. Consider a section column which is 
composed of several thin plates, then the Euler buckling load can be considered as 
a global buckling load of the column. 

P( )cr column 

EIl 
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On the other hands, local buckling force of a simply-supported plate reads: 

kcπ
2D 

Ncr = 
b2 (357) 

where D = Eh3/ 
£ 
12 
¡
1 − ν2

¢¤ 
and kc = [(mb) /a + a/ (mb)]2 . Thus, the total local 

buckling load can be obtained: 

kcπ
2D 

(Pcr)plate = (358)
b 

Ncr 

b 

h 

a 

Transition from global to local buckling can be calculated by (Pcr)column = 
(Pcr)plate: 

π2 EI 
= kc 

π2D 
(359)

l2 b 
kcπ

2E h3 

= 
12 (1 − ν2) b 

I kc 
µ 
l 
¶2 

bh3 = 
12 (1 − ν2) b

(360) 

Example 7 Consider a square box column. 
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b 
b 

l 

h 

Then, one obtains: 

kc =4  

I =
2 
hb3 

3 

Now,  the global  buckling load reads:  

I 2π2E hb3 

(Pcr)column = π2E
l2 = 3 l2 

and the local buckling load from four plates can be calculated: 

4kcπ
2E h3 

=(Pcr)four  plates  12 (1− ν2) b 

Then, applying (Pcr)column = (Pcr)four  plates, one  gets:  µ ¶2
b2 

' 2.20 
hl 

Thus, the local and global buckling loads become same when 

b2 ' 1.5hl 

For example, if b = 40h, then  l = 60b. 

Transition from the local to global buckling for an open channel section with 
lips  is  shown in the  figure below. 
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Buckling coefficients and modes for a hat section 

4.4.2 Local Buckling 

The remainder of this section deals only with the local buckling. Dividing both 
sides of Eq. (357) by the plate thickness b gives the expression of the buckling stress 
σcr: µ ¶2Ncr kcπ

2E h 
σcr = = (361)

h 12 (1 − ν2) b 

Consider two adjacent plates of a section of the prismatic column. 

1h

1b

2h

2b

1Plate  

2Plate  

Compatibility and equilibrium conditions at junction 
of adjoining walls of a section 

In general, there will be a restraining moment acting at the corner line between 
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Plate  1 and Plate  2. The buckling stresses for those two plates are: µ ¶2k1π
2E h1

(σcr)1 = (362)
12 (1 − ν2) b1 µ ¶2k2π

2E h2
(σcr)2 = 

12 (1 − ν2) b2 

Before buckling, stresses in the entire cross-section are the same. So, at the point 
of buckling, one gets: 

(σcr)1 = (σcr)2 (363) 

from which the buckling coefficient k2 is relating to k1: µ ¶2h1 b2
k2 = k1 (364)

h2 b1 

The total buckling load on the angle element is: 

Pcr =(σc)1 h1b1 + (σc)2 h2b2 (365)" #µ ¶2 µ ¶2π2E h1 h2 
= k1 h1b1 + k2 h2b2
12 (1 − ν2) b1 b2 " # 

π2E (h1)
3 µ

h1 b2 
¶2 (h2)

3 

= k1 + k1
12 (1 − ν2) b1 h2 b1 b2 µ ¶2π2Ek1 h1 

= A 
12 (1 − ν2) b1 

where A is the sectional area of two plate A = b1h1 +b2h2. From this derivation, the 
conclusion is that only one buckling coefficient is needed to calculate the buckling 
load of the section consisting of several plates. 

Determination of the buckling coefficient is a bit more complicated because of 
the existence of the edge bending moment. This can be illustrated in an example 
of a box column with a rectangular cross section with the same thickness h. 

b1 

b2 

uniform thickness h 

The wider flange will be ready to buckling first while the narrow plate is not ready 
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to buckle. When the second plate buckles, the first plate would have buckled long 
before. Thus, there is an interaction between left plates, and a compromise must 
be established because left plates must buckle at the same time. The buckling 
coefficient as a function of the ratio b2/b1 is  plotted in the  figure next. 

h 

h 

Buckling coefficients for box sections 

In the limiting case of a square box (b1 = b2 = b), k1 = 4 and the edge interactive 
moment between adjacent plates is zero. 

Some useful graphs and formulas for typical sections are given next. 
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5 Buckling of Cylindrical Shells 

5.1 Governing Equation for Buckling of Cylindrical Shells 

The starting point of the analysis is the strain-displacement relation for plates: 

1 1 
ε◦ = (uα,β +uβ,α ) +  w,α w,β (366)αβ 2 2 
καβ =− w,αβ 

Consider a flat plate (x, y) and a segment of a cylinder (x, aθ), where  a is the radius 
of a cylinder and θ is the hoop coordinate. 

aθ 

a 

y 

x x 

Can the strain-displacement relation for a cylinder be derived from similar re-
lation for a flat plate? 

x x ; dx dx (367)→ → 

∂ 1 ∂ 
y aθ ; (368)→ 

∂y 
→ 

a ∂θ 

Consider component by component. Use the notation: 

u1 = ux → u 
u2 = uy → v (369) 

u3 w→ 

Then, one gets: 

ε◦ = u,x +
1 
(w,x )

2 (370)xx 2

u,θ 1 ³ w,θ 
´ 2 w 

ε◦ = + + (371)θθ a 2 a a ³ ´ 
ε◦ =

1 u,θ 
+ u,x +

1 
w,x 

w,θ (372)xθ 2 a 2 a 

There is a new term w/a in the expression for the hoop strain. The physical 
meaning of this new term becomes clear if we consider axisymmetric deformation 
with v = 0  and w independent of θ. Define the hoof strain as a relative change 
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in the length of circumference when the original circle has a radius of "a" before  
deformation and a new circle has a radius of "a + w" after deformation: 

ε◦ =
2π (a + w) − 2πa 

= 
w 

(373)θθ 2πa a 

a 

wθ 

Mathematically, Eq. (370)-(372) can be derived from its counterparts by trans-
forming the rectangular coordinate system into the curvilinear coordinate system. 

x = r sin θ (374) 

y = r cos θ 

The step-by-step derivation can be found, for example, in the book by Y.C. Fung, 
"First Course in the Continuum Mechanics." The expression for curvature are 
transformed in a similar way: 

κxx = w,xx (375) 

κθθ = 
w,θθ 

a2 

κxθ = 
w,xθ 

a 

Using the variational approach explained in details for the plate problem, one can 
see that the only new term in the expression for δΠ = 0  is Z 

δw 
Nθθ dS (376) 

S a 

Therefore, the new term should be added in the equation for out-of-plane equilib-
rium: µ ¶

1 2 1 
D∇4 w + Nθθ − Nxxw,xx + Nxθw,xθ + 

2 Nθθw,θθ = q (377) 
a a a

where 
2 1 ∇4 w = w,xxxx + 
a
w,xxθθ + 

a
w,θθθθ (378)

2 4 
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The above equations are the nonlinear equilibrium equations for quasi-shallow cylin-
drical shells. The linear equilibrium equations are obtained by omission the non-
linear terms, i.e. terms in the parenthesis. The resulting equations are: 

aNxx,x +Nxθ,θ =0  (379) 

aNθθ,x +Nθθ,θ =0  
1 

D∇4 w + 
a
Nθθ = q 

with ´³ w 
Nxx =C u,x +ν (380) 

a 
w0 
³
 ´


Nθθ =C + ν u,x 
a ¢¡

satisfy the system Eq. (379) and (380). 

Special Case I: Cylinder under Axial Load P , q = 0  

1− ν2 

These solutions will be denoted by Nαβ 

where C is the axial rigidity, C = The pre-buckling solution should Eh/
 .

=


−N◦
αβ. 

5.1.1 

The membrane forces in the pre-buckling state are: ¯̄̄̄



¯̄̄̄



P
 1 0 

(381)
N◦ = αβ 0 0 
2πa


and the corresponding displacement field reads: 

P 
u (x) =− x (382)

2πahE 
ν Pl  

w = 
E 2πah 

l 
w 

( )u l  

aθ 

x 

It is easy to prove that the above solution satisfies all field equation. 
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5.1.2 Special Case II: Cylinder under Lateral Pressure 

0 0  ̄̄̄¯¯̄̄̄
(383)
N◦ =αβ Nθθ 0 1 


where from the constitutive equations Eq. (380): 

w 
Nθθ = Eh (384) 

a 

Substituting Eq. (384) into Eq. (379) leads the following linear forth order inho-
mogeneous ordinary differential equation for w (x): 

Ehw 
Dw0000 + 

a2 = q (385) 

or in a dimensionless form: 
d4w 
dx4 + 4β

4 w = 
q 
D 

(386) 

where ¡
 ¢

1− ν2 

2h4
β4 Eh 3
= = (387)


a2D a


The dimension of β is [L−1M0T 0], so βx is dimensionless. There are four boundary 
conditions for a simply supported cylinder: 

Mxx =w = 0  at x = 0  (388) 

Mxx =w = 0  at x = l 

where one gets from the moment-curvature relation: 

d2w 
Mxx =−D 

dx2 (389) 

Mθθ =0  

The general solutions of the above boundary value problem is: 

w (x) = e−βx [c1 sinβx + c2 cosβx] + e βx [c3 sinβx + c4 cosβx]− 
q 

(390)
D4β4 

The four integration constants can be found from the boundary conditions. A 
typical term of the solution is a rapidly decaying function of x. 
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It can be conducted that the curvature and bending is confined to a narrow  
boundary zone of the width xb = π/ (2β). The remainder of the shell undergoes a 
uniform radial contraction: 

w0 =
q 

(391)−
D 4β4 

For the sake of simplicity, this localized bending can be neglected (D 0).→
Then, from Eq. (379), the hoop membrane force is related to the lateral pressure 
by Nθθ = qa and the pre-buckling solution is: 

N◦ = qaαβ 

¯̄̄̄


0 0 

0 1 


¯̄̄̄

 (392)


5.1.3 Special Case III: Hydrostatic Pressure 

For a cylinder subjected to the hydrostatic pressure, the total axial compressive 
force is: 

P = qπa2 (393) 

The pre-buckling solution is: 

N◦ = qaαβ 

¯̄̄̄


1/2 0 

0 1 


¯̄̄̄

 (394)


which is a classical membrane stress state in a thin cylinder. 
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5.1.4 Special Case IV: Torsion of a Cylinder 

The pre-buckling stress in a cylinder subjected to the total torque of the magnitude 
T is: 

M 
¯̄̄̄



¯̄̄̄

 (395)


0 1 

N◦ = αβ 1 0 
2πa


Nθx 

M 

aθ 

x 

5.2 Derivation of the Linearized Buckling Equation 

We are now in the position to linearize the nonlinear buckling equation Eq. (377). 
It is assumed that the state of membrane forces does not change at the point of 
buckling from the pre-buckling value. Thus, 

−N◦ (396)Nαβ = αβ 

and Eq. (377) becomes: ∙ ¸

1 2 14 (397)
D∇

where the hoop membrane force Nθθ, the second term in Eq. (397), depends linearly 
on three component of the displacement vector (u, v, w): 

w + N◦ w,xx + N◦ N◦Nθθ + xx xθw,xθ + 
2 θθw,θθ = q


a a a


µ

1 w


¶


Nθθ =
C
 v,θ + + νu,x (398)

a a 
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Therefore, the out-of-plane equilibrium equation is coupled with the in-plane dis-
placement (u, v) through the presence of the term Nθθ. Note that in the plate 
buckling problem the in-plane and out-of-plane response was uncoupled. It is 
possible to eliminate the terms involving in-plane components using the full set of 
equilibrium and constitutive equations in the in-plane direction. By doing this, the 
order of the governing equation has to be raised by four to give eight: 

1− ν2 ∙ 
2 1 

¸
8 w + 4 N◦ w,xx + N◦ N◦ = 0  (399)D∇

a2 Cw,xxxx +∇ xx a xθw,xθ + 
a2 θθw,θθ 

The above equation is called the Donnell stability equation in the uncoupled form. 
Not that w (x, θ) in the above equation represents additional lateral deflection over 
and above those produced by the pre-buckling solution. The total deflection is a 
sum of the two. 

5.3 Buckling under Axial Compression 

5.3.1 Formulation for Buckling Stress and Buckling Mode 

We are now in a position to develop solutions to the buckling equations, Eq. (399) 
for four different loading cases discussed in the previous section. Consider first 
Case I of a simply-supported cylindrical shell in which the pre-buckling solution is 
given by Eq. (381). In this case, Eq. (399) reduces to: 

D∇8 w +
1− 
a2 

ν2 

Cw,xxxx +
2

P

πa
∇4 w,xx = 0  (400) 

The buckling deflection of the shell is assumed in the following form: ³ ´ 
w (x, θ) = c1 sin 

mπx 
l 

sin (nθ) (401) 

where c1 is the magnitude, and the integer numbers (m, n) denote the  number  
of half-waves respectively in the axial and circumferential direction. The above 
deformation satisfies both simply-supported boundary conditions at the ends, x = 0  
and x = L, and periodicity conditions along the circumference. 

Here, the half-length of the buckling wave is defined: 

l 
λ = (402) 

m 

It is convenient to introduce a dimensionless buckling number, m̄: ³ ´ mπx mπa x x 
= = m̄ (403)

l l a a 
mπa 

m̄ = ⇒ 
l 
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Using the dimensionless buckling number, substituting the solution Eq. (401) 
into the governing equation Eq. (400) leads: ³ ´∙ 
D ¡ 2 2

¢4 4 ¡ ¢ P ¡ 2 2
¢2 2

¸ 
c1 x 

2 m̄ + n + m̄ 1 − ν2 C − m̄ + n m̄
6 sin m̄ sin (nθ) = 0  

a 2πa a a 
(404) 

By setting the coefficient in the square bracket to zero, the critical buckling mem-
brane force per unit length becomes: 

Pcr
Ncr = (405)

2πa ¡
m̄2 + n2 

¢2 ¡ ¢ 2 

= 
D 

+ 1 − ν2 C
m̄

a2 m̄2 (m̄2 + n2)2 

Here, by introducing the dimensionless parameter χ: ¡ ¢2 
m̄2 + n2 

χ = 
2 (406) 

m̄

Eq. (405) reads: 

Ncr = 
D
χ + 

¡
1 − ν2

¢ 
C 
1 

(407) 
a2 χ 

The dependence of the buckling force on the parameter χ is  shown in the  figure 
below. 
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Treating χ as a continuous variable, one can find an analytical minimum: 

dNcr D ¡ ¢ 1 
dχ 

= 
a2 − 1 − ν2 C

χ2 = 0  (408) 

from which the optimum value of the parameter χ is: r 
(1 − ν2) Ca2 

χopt = 
D 

(409) pa 
= 12 (1 − ν2)
h

a ' 3.3 
h 

Introducing the expression for the optimum parameter χ into Eq. (407) and using 
definitions of bending and axial rigidity, one gets: 

E h2 

(Ncr)min = p (410) 
3 (1  − ν2) a 

The buckling stress is obtained by dividing the critical membrane fore by the shell 
thickness h: 

σcr =
(Ncr)min (411)

h 
E h 

= p
3 (1  − ν2) a 

h 
σcr ' 0.605 E (412) 

a 

This is the classical solution for the buckling stress of a cylindrical shell subjected 
to axial compression. While the buckling load is unique and does not depend on 
(m̄, n), the buckling mode is not unique as: ¡ ¢2 

m̄2 + n2 a 
χopt = = 3.3 (413) 

m̄2 h 

There are infinity of combinations of m̄ and n that give the same expression. 

Example 8 Let a/h = 134, then  ¡ ¢2 
m̄2 + n2 

χopt = 
2 = 3.3 × 134 ' 442 

m̄
m̄2 + n2 

' 21⇒ 
m̄
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p
n = 21m̄ − m̄2 

5.3.2 Buckling Coefficient and Batdorf Parameter 

Let us introduce the dimensionless buckling stress or the buckling coefficient kc: 

hl2 

kc = σcr (414)
π2D 

Additionally, the Batdorf parameter Z is defined: p l2 

Z = 1 − ν2 (415)
ah 

Using Eq. (411), the buckling coefficient becomes: 

E h hl2 

kc = p (416) 
3 (1  − ν2) a 

× 
π2D 

12 p l2 

= √
3π2 

1 − ν2 
ah 

12 
= Z√

3π2 

kc ' 0.702 Z (417) 

This relation between kc and Z are shown in the figure below together with two 
limiting cases of very short and very long cylindrical shells. These two limiting 
cases are discussed below. 
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Limiting Cases: 
conditions: 

Short Cylinders, a À l Consider a case of the following 

a À l 

⇒ 
a 
l 
→∞  (418) 

Then, it is natural to assume that the number of half-waves in the axial direction 
is unity: 

m = 1  

Consequently, one gets: 
a 

m̄ = π (419)
l 
→∞  

Since m̄ is much larger than n, one also gets: 

m̄2 + n 2 m̄2 (420)' 
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Now, from Eq. (405), the membrane force reads: 

P 
Ncr = (421)

2πa 

= 
D
m̄2 +

¡
1− ν2

¢ 
C 
1 

a2 m̄2 

m̄2D 
= 

2a
π2D 

= 
l2 

The buckling stress reads: 
Ncr π2D 

σcr = = 
h hl2 

Now, from the definition of the buckling coefficient, Eq. (414), the buckling coeffi-
cient for the very short cylindrical shells reads: 

kc = 1  

This solution indicated in previous figure as the lower bound cut-off value. The 
upper bound cut-off values is given by the Euler buckling load. 

Limiting Cases: Very Long Cylinders, l À a The cylindrical shell is becom-
ing the Euler column. The buckling load of the column is: 

π2EI 
Pcr = (422)

l2 

where I = πa3h for cylinder sections.  
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The buckling stress reads: 

Pcr
σcr = (423)

2πah 
π2 ³ a ́  2 

= E 
2 l 

For this very long cylindrical shells, the buckling coefficient can be written: ¡ ¢ ³ a ́  2 
kc = 6 1− ν2 (424)

h 

µ ¶4 

kc = 6
a

Z2 (425)
l 

From Eq. (411) and (423), the transition between the local shell buckling and 
global thin-walled column buckling occurs when 

(σcr)shell = (σcr)column (426) 

which gives: 
E h π2 ³ a ́  2 p = E (427) 

3 (1− ν2) a 2 l p
hl2 

= 
π2 3 (1− ν2) 

.15 (428)⇒ 
a3 2 

' 8

5.4 Buckling under Lateral Pressure 

From the pre-buckling solution, Eq. (392), the governing equation Eq. (399) be-
comes: 

q
D∇8 w +

1− 
a2 

ν2 

Cw,xxxx +
a
∇4 w,θθ = 0  (429) 

Assuming the double sine buckling deflection function, similar to the case of axial 
compression, the governing equation becomes: ³ ´∙ 

D ¡ ¢4 ¡ ¢ ¡ ¢2¸ 
x 

m̄2 + n 2 + m̄ 4 1− ν2 C − qa n 2 m̄2 + n 2
c1 
sin m̄ sin (nθ) = 0  

2 6a a a 
(430) 

By setting the coefficient in the square bracket to zero, the equation for the buckling 
pressure becomes: ¡ ¢2 

D m̄2 + n2 ¡ ¢ m̄4 

qa = 
2 2 + 1− ν2 C 2 (431) 
a n n2 (m̄2 + n2)
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It can be shown that the smallest eigenvalue is obtained when m = 1 or m̄ = πa/l. 
With this observation, the solution becomes a function of the parameter n, or  
dimensionless parameter n̄: 

nl 
n̄ = (432)

πa 
Additionally, we define the dimensionless buckling pressure, q̄: 

l2a 
q̄ = q (433)

π2D 

Now, substituting m̄, n̄ and p̄ into Eq. (431) leads: ¡ ¢2 ¡ ¢ µ ¶21 + n̄2 1 1− ν2 C l 
q̄ = + (434) 

n̄2 n̄2 (1 + n̄2)2 a2 a

By introducing the Batdorf parameter Z, one gets: 

1 + n̄2 1 12 
q̄ = 

¡
n̄2 

¢2 

+ 
2)2 π

Z2 (435) 
n̄2 (1 + n̄

For any value of the geometrical parameter Z, there exists a preferred n̄ which 
minimize the buckling pressure. Treating n̄ as a continuous variable, the optimum 
n̄ can be found analytically from d¯ n = 0 Substituting this back into Eq. (432), p/d¯ . 
there will be a unique relation between the buckling pressure and the Batdorf pa-
rameter. The solution is shown graphically in the figure below. 

Limiting Cases: Very Long Cylinders, l À a In the limiting case of a long 
tube (l À a), one gets: 

a 
m̄ = mπ 0 (436)

l 
→ 
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In this case, the last term in Eq. (431) vanishes and the buckling pressure becomes: 

n2 D 
q = 

3 (437) 
a

Imagine a long cylinder consisting of a change of ring, each of the height b. The  
moment of inertia of the ring along the axial axis reads: 

bh3 

I = (438)
12 

From Eq. (437) and (438), the intensity of the line load Q = qb can be written: 

Q = qb (439) 

n2 Eh3 

= b 
a3 12 (1 − ν2) 

n2EI 
= 
a3 (1 − ν2) 

The above approximation is due to Donnell. The smallest integer value is n = 1  
which gives the following buckling mode. 
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The Donnell solution should be compared with more exact solution of the ring 
buckling problem which take into account a more complex incremental displacement 
field with both  w (θ) and v (θ). Here, a distinction should be made between the 
centrally directed pressure (as in all preceding analysis) and the field -pressure 
loading where pressure is always directed normal to the deformed surface. 

In the later case, the ring buckling occurs at: ¡ ¢ EI 
Qc = n 2 − 1 

a3 (440) 

where the smallest integer n = 2 so that Q = 3EI/a3 . The buckling mode has now 
eight nodal points rather than four. 

The solution of centrally directed pressure loading case is: 

Qc =

¡
n2

2

− 1 
¢2 

EI 
3 (441) 

n − 2 a

where again the smallest n = 2. Thus the smallest buckling load intensity is: 

EI 
Qc = 4.5 3 (442) 

a

It is seen that for a realistic value n=2, the present solution, Eq. (439) gives 
the buckling pressure between the two cases of field-pressure loading and centrally 
directed loading, 3 < 4 < 4.5. 

5.5 Buckling under Hydrostatic Pressure 

Special case of the combined loading in which the total axial load P is: 

P = πa2 q (443) 
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The pre-buckling solution is given by Eq. (394). The solution of the buckling equa-
tion still can be sought through the sinusoidal function, Eq. (401). The optimum 
solution can be found by a trial and error method varying parameters m̄ and n̄. A  
graphical representation of the solution is shown in figure below. 

5.6 Buckling under Torsion 

A twist applied to one end of a cylindrical shell process a twisting force Nxθ: 

M 
N◦ = (444)xθ 2πa 

The other two components of the pre-buckling membrane forces vanish N◦ = N◦ = xx θθ 
0. Moreover, the force is constant. 
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Under these conditions, the governing equation reduces to: 

8 w + N◦ 4 w,xθ = 0  (445)D∇ 1− 
a2 

ν2 

C w,xxxx + 
a 
2 

xθ ∇

In view of the presence of odd-ordered derivatives in the above equation, the sep-
arable form of the solution for w (x, θ), assumed previously, does not satisfy the 
equation. 

Under torsional loading, the buckling deformation consists of circumferential 
waves that spiral around the cylindrical shell from one end to the other. Such 
waves can be represented by a deflection function of the form: ³ ´ x 

w (x, θ) = C sin m̄
a 
− nθ (446) 

with 
mπa 

m̄ = (447)
L 

where m and n are integers. The alone displacement field satisfy the differential 
equation and the periodical condition is the circumferential direction, but does not 
satisfy any commonly used boundary at the cylinder ends. Consequently, this 
simple examples can be used only for long cylinders. 

For such cylinders, introduction of the additional displacement field into the 
governing equation, yields: 

2 3
¡
m̄2 + n

¢2 
D m̄ ¡ ¢ 

N◦ = + 2 C (448)xθ 2 m̄ n  a2 2 (m̄2 + n2)2 n 
1− v 

For sufficiently long cylinders, the shell buckles in two circumferential waves, n = 2. 
Also, the term m̄2 is small compared with 4. Then, the approximate expression is: 

4 D m̄3 ¡ ¢ 
N◦ = + 2 C (449)xθ m̄ a2 64 

1− v 

An analytical minimization of the alone experiment with repeat to m̄ gives: µ ¶264 h 
m̄4 = (450)

9 (1− ν2) a 
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Upon substitution, the final expression for the buckling force, or better, critical 
shear strain causing buckling is: µ ¶3/2N◦ 0.272 E h 

τ cr = xθ = (451)
h (1 − ν2)3/4 a 

The above solution was given by Donnell. As noted, the above solution is invalid 
for short shells due to the difficulties in satisfying boundary condition. A more 
rigorous analytical-numerical solution is shown in the figure below. 

As the radius of the shell approaches infinity, the critical stress coefficient for 
simply supported and clamped edge approaches respectively the value 5.35 and 8.98 
corresponding to plates under the shear loading. 

5.7 Influence of Imperfection and Comparison with Experiments 

Because of the presence of unavoidable imperfection in real shells, the experimen-
tally measured buckling load are much smaller than the ones found theoretically. 

Reduction in the 
buckling strength 
due to imperfection 

Comparison of theoretical and experimental results for four different type of loads: 
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• Axial compression 

Torsion • 

• Lateral pressure 

• Hydrostatic pressure 
are shown in the subsequent two pages. Note that the graphs were presented 

in log − log scale. Replotting the results for axially loaded plate yields the graph 
shown below. 
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Distribution of test data for cylinders subjected to axial compression. 

Figure by MIT OCW. 
The differences are shown to be very large. Design curves for cylindrical and 

other shells are based on the theoretical solution modified by empirical prediction 
factors called "know-down factors". For example, the solid curve shown in the 
receding page is a "90 percent probability curve." For a/h = 50, the reduction 
factor predicted by this probability curve is 0.24. Thus, the theoretical solution 
σcr = 0.605 Eh/a should be multiplied by 0.24 for the design stress σ = 0.15 Eh/a. 

Cylindrical shells loaded in different way are been sensitive to imperfections and 
the resulting knock-down factors are smaller. 

Most industrial organization establish their own design criteria. They are fre-
quently loose-leaf and are continuously updated on the volume of the experimented 
evidence increase. The situation can be converted to the firmly established manual 
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of steel constructions for the design of columns and beam. The reason is that col-
umn are not sensitive to imperfection as far as the ultimate strength is concerned. 
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