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1 Strain-Displacement Relation for Plates

1.1 1-D Strain Measure
1.1.1 Engineering Strain
Engineering strain € is defined as the relative displacement:

N ds — dSO

3
dSO

(1)

where dsg is the increment of initial lenght and ds is the increment of current length.
1.1.2 Green-Lagrangian Strain
Instead of comparing the length, one can compare the square of lengths:
o ds? — ds3
2ds3
_ ds —dsg ds + dsg
- dSo 2d80

Where ds — dsg, the second term is Eq. (2) tends to unity, and the Green strain
measure and the engineering strain become identical. Equation (2) can be put into
an equivalnet form:

ds? — dsg = 2Eds? (3)

which will now be generalized to the 3-D case.
1.2 3-D Strain Measure

1.2.1 Derivation of Green-Lagrangian Strain Tensor for Plates

Let define the following quanties:

e a = [a;]: vector of the initial (material) coordinate system

e x = [x;]: vector of the current (spatial) coordinate system

e u = [u;]: displacement vector

where the index 7 = 1, 2, 3. The relation between those quantities is:

T, =a; + Uu; (4)
dx; = da; + du;



Now, the squares of the initial and the current length increment can be written
in terms of q; and u;:

dS% = daidajéij (5)
d52 = dxida:jéij (6)
= (dai + dui) (daj + duj) 52‘]'
where the Kronecker tensor d;; reads:

100
5; =010 (7)
001

The vector u can be considered as a function of:

e the initial (material) coordinate system, u(a), which leads to Lagrangian
descripion, or

e the current (spatial) coordinates, u (x), which leads to the Eulerian descrip-
tion

In structural mechanics, the Lagrangian description is preferable:

w; = u; (a;) (8)
8'LL7;
du; = dag = u;,, dag
Oay,
ou;
duj = a—ajdal = uj, do

Let us calculated the difference in the length square:

ds® — dst = (da; + du;) (daj + du;) §;; — da;dajoy; 9)



Using Eq. (8) and the definition of §;;, the difference in the length square can be

transformed into:

ds? — ds = (dujda; + du;daj + du;duy) 6;; (10)
= (uj,l da; da; + ui,p, day daj + u;,, dag ujy day) 51'3'

=[uju (dajdz) da; +uik (daidix) daj+wig uju (daidiy) (dajds)] o

(W), +uiyj +isk W),k ) daida;j

=2F

ij da;da;

where, by analogy with the 1-D case, the Lagrangian or Green strain tensor E;; is
defined:

1
E;j = 3 (Wirj FUjyi ki Ukyj ) (11)

In the case of small displacement gradient (ug,; < 1), the second nonlinear term
can be neglected leading to the defintion of the infinitesimal strain tensor:

1
= (U5 +uj,,-) (12)

gij = 5 (

From the defintion, the strain tensor is symmetric €;; = €j;, which can be seen by
intechanign the indices ¢ for j and j for . In the moderately large deflection theory
of structures, the nonlinear terms are important. Therefore, Eq. (11) will be used
as a starting point in the development of the general theory of plates.

Components of Green-Lagrangian Strain Tensor Let define the following
range convention for indices:

o Greek letters: o, 5,... =1,2
e Roman letters: ¢,7,... =1,2,3

With this range convention, the Roman letters are also written as:

i=a,3 (13)
Jj=83

The Lagrangian or Green strain tensor can be expressed:

En E12 i E13
Eaﬂ E, P
Eij = E21 Ezz E23 =
E31 E32 E E33 Ea3 5 E33

where E,z is the in-plane component of strain tensor, E,3 and F3g are out-of-plane



shear components of strain tensor, and Fj33 is the through-thickness component of
strain tensor. Similarily, displacement vector can be divided into two components:

u,| |u

u:uzzv:

u,| |w| |w

where u,, is the in-plane components of the displacement vector, and ug = w is the
out-of-plane components of the displacement vector and also called as the trans-
verse displacement.

Initial Undeformed Configuration

midd

surfa \
,‘."

Deformed Configuration

Assumptions of the von Karman Theory The von Karman thoery of mod-
erately large deflection of plates assumes:

1. The plate is thin. The thickness h is much smaller than the typical plate
dimension, h < L.

2. The magnitude of the transverse deflection is of the same order as the thickness
of plate, |w| = O (h). In practice, the present theory is still a good engineering
approximation for deflections up to ten plate thickness.



3. Gradients of in-plane displacements 4,3 are small so that their product or
square can be neglected.

4. Love-Kirchhoff hypothesis is satisfied. In-plane displacements are a linear
function of the z—coordiate (3-coordinate).

Uq = Uy — Z Uya (14)

where ug, is the displacement of the middle surface, which is independent of
z—coordinate, i.e. ug,3= 0; and us,q is the slope which is negative for the

"smiling" beam.

5. The out-of-plane displacement is independent of the z—coordiante, i.e. uz,3 =
0.

1.2.2 Specification of Strain-Displacement Relation for Plates

In the theory of moderately large deflections, the strain-displacement relation can
be specified for plates.

In-Plane Terms of the Strain Tensors From the general expression, Eq. (11),
the 2-D in-plane componets of the strain tensor are:

1

E.5 = 3 (Ua,8 +UBsa +Ukra Uk,3) (15)

Here, consider the last, nonlinear term:

Uksa Uy = Ulsa UL, FU2,0 U2,8 HU3sa U3,B (16)

=Uy;a Uy,3 TU3;0 U343

In the view of the Assumption 3, the first term in the above equation is zero,
Uysa Uy, ~ 0. Therefore, the 2-D in-plane components of strain tensor reads:

1
Eag =5 (Uasp HUgsa +W,a W,g) (17)



where w = us. Introducing Eq. (14) into Eq. (17), i.e. applying Love-Kirchhoff
hypothesis, one gets:
E.3= [(ug—z w,a),g—i—(u%—z w,g) o +W,a w,g] (18)

(ugmﬁ +u%>a -2z W,ap FW,q waﬁ)

NN

1
(ugmﬂ +U%,a) — 2 W,ap F W, w,p

) 2

From the definiton of the curvature, one gets:
KaB = —W,ap (19)
Now, Eq. (18) can be re-casted in the form:
Eop = Egg + 2 Kag (20)

where the strain tensor of the middle surface EJ; is composed of a linear and a
nonlinear term:

o 1 o o 1
ESs = 5 (ua,g —|—uﬁ,a) + §w,a w,3 (21)

In the limiting case of small displacements, the second term can be neglected as
compared to the first term. In the classical bending theory of plate, the in-plane
displacements are assumed to be zero u, = 0 so that strains are only due to the
curvatue:

Eag = Z Kag (22)
where 920 2
_ |R11R12| 8%2 8(an o
Kap = Kol Koz | 92w 2w | W,ap (23)
0x0y  0y?

In the above equation, k11 and k9o are curvatures of the cylindrical bending, and
k12 is the twist which tells how the slope in the x—direction changes with the

y—direction:
oo = 9 (Ow
27 9y \ oz

for a cylinder



Interpretation of the linear terms: % (ug,ﬁ +u%,a) Each component can

be expressed in the followings:

1 du
€11 = 5 (u1,1 +ut,1) = v, = d—:::l (24)
1 du
€22 = B} (u2,2 +ug,2 ) = u2,2= d_y2 (25)
1 1 du1 dUQ
_ 1 R 26
2= (2 tup,1) = 5 (dy + da:) (26)
1 du1
€12lif uy—o = 2 dy
511 M2 =
€12 \/
X X X
y 4 Y .
€ U,

Therefore, 11 and e99 are the tensile strain in the two directions, and €12 is the
change of angles, i.e. shear strain.

Interpretation of the nonlinear term: %w,a w,3 Let a =1and g = 1.
Then, the nonlienar term reads:

2
1 ldwdw 1 (dw) 27)

R N ¥ e

One can also obtain the same quantity by the defintion of 1-D Green-Lagrangian
strain:

E_ds2—d53N(dsg+dw2)—dsg_1 dw\? 1 (dw)? (28)
a 2ds3 2ds3 2 \dsg) 2 \dx



dx

> X

ds, = dx
ds> = ds} + dw*

dw

Z,Wy

Thus, the conclusion is that the nonlinear term %w,a w,g represents the change of
length of the plate element due to finite rotations.

Out-Of-Plane Terms of the Strain Tensors Refering to the definition intro-
duced in Section 1.2.1, there are three other componets of the strain tensor: Fsg,
FEo3 and F33. Using the general expression for the components of the strain tensor,
Eq. (11), it can be shown that the application of Assumption 4 and 5 lead to the
following expressions:

E3g = = (u3,3 +ug,3 +uk,3 Uk,3) (29)

— N =

= —[us,p +ug,3+ (u1,3 w18 +u2,3 u2,3+us,3 u3,3 )]

[us,3 —us,g + (—ug,1 ui,p —us,2 u2,3)]

N~ NN

(_u371 U1,3 —U3,2 u2>ﬁ)

1
= _wa Uy,

>
|

=3 (ua73 +u3704 +ukaa Uk»3 ) (30)

[Ua,3 +U30 + (Ul,a ©1,3 +U2,0 U2,3 +U3,q U3,3)]

[_u3>oc +u3>o¢ + (_ulva U3,1 —U2,q U3,2 )]

(_ulaa U3,1 —U2a u372)

1

= Ewa’y Uy

[NCR I NON I NG I NG



1
E33 = 3 (u3,3 +u3,3 +uk,3 Uk,3) (31)

1
=1U3,3 +§ {(Ulv?) )2 + (u2,3 )2 + (u3,3 )2}

= % {(Uhs )2 + (u2,3 )2}

1

=3 [(—u3,1 )? + (—uz )2}
1

= §ww 'LU,/Y

The above are all second order terms which vanish for small deflection theory of
plates. In the theory of moderately larege deflection of plates, the out-of-plate shear
strains as well as the through-thickness strain is not zero. Therefore, an assumption
"plane remains plane," expressed by Eq. (14), does not mean that "normal remains
normal.” The existance of the out-of-plane shear strain means that lines originally
normal to the middle surface do not remain normal to the deformed plate. However,
the incremental work of these strains with the corresponding stresses is negligible:

E33033, 03043 and F33033, are small (32)

because the corresponding stress o3g, 0,3 and o33 are small as compared to the
in-plane stress o,3. Omne can conclude that the elastic strain energy (and even
plastic dissipation) is well approximated using the plane strain assumption:

1 1
/—aijel-jdzz/—aagaagdz (33)
h2 h 2



2 Derivation of Constitutive Equations for Plates

2.1 Definitions of Bending Moment and Axial Force
Hook’s law in plane stress reads:

E
- [(L—v) cap+ v gy dag]

Oag =

In terms of components:

E
Ore =13 (Ezz +V €yy)

Oy =13 (Eyy TV €xa)
E
T = T

Here, strain tensor can be obtained from the strain-displacement relations:

€af = 625 + 2 Rap

Now, define the tensor of bending moment:

h
Ma55/2 Oap 2 dz

and the tensor of axial force (membrane force):

Nop 5/2 Oap dz

[y

=

[SIEy

2.2 Bending Energy
2.2.1 Bending Moment

Let us assume that 525 = 0. The bending moment M,g can be calculated:

NIy

E
Maﬁ:m/_ﬁ[(l_y) €aB +V €y 0ap) 2 dz

2

h
E o] (¢} E
=T 3 (1-v) Eap TV 0y 5a5]/ﬁzdz
2
h
E 2
o (=) Ko+ v iy gl [ 57
ER?

10

(36)

(37)

(38)

(39)



Here, we define the bending rigidity of a plate D as follows:

Eh3
12 (1 —v?2)

Now, one gets the moment-curvature relations:

D:

Mug =D [(1 -v) Kag+V Kyy 0ag]

where M2 = Mbs; due to symmetry.

M1 =D (k11 + v k22)
M =D (ko2 + v K11)
M12 =D (1 — I/) K12

2.2.2 Bending Energy Density

(40)

One -Dimensional Case Here, we use the hat notation for a function of certain

argument such as:

My = My (k11)
:D K11

Then, the bending energy density U, reads :

Up= / My (k11) deny

=D / K11 d/€11

= 5 D (ml)
1 B
Up = §M11 K11

J_U
T

ISW
X
=

11

(44)



General Case General definition of the bending energy density reads:

0, = jf Mes driag (47)

> Koy

0

Calculate the energy density stored when the curvature reaches a given value Rqg.
Consider a straight loading path:

Kag =1 Kag (48)
dliag = Kap dn

K’L\B

Mep = Mop (Kap) (49)
= Map (77 Raﬁ)
=1 Mog (Fap)

12



where Mag (Kkap) is a homogeneous function of degree one.
U= j{ Mop (Kop) drap (50)
1 ~
—/ 1 Mo (Fap) Fap di
0
. 1
ap (Rap) Fap /0 1 dn
Lo~ _
=5 Mag (Rap) Fap
1 _
= 2 apf /{’046

Now, the bending energy density reads:

U=~ [(1=v) Rap +V Fyy dap| Fap (51)

(1 =v) Rap Fag +V Fyy Rap dag]

| ST

=5 {(1 — V) Kag Rap +V (R’W)2]

The bending energy density expressed in terms of components:

_ D

Up= > {(1 —v) [(/?611)2 +2 (R12)? + (R22)2} +v (R + RQQ)Z} (52)
D (1 _ _\2 — N
=3 { —v [ Ri1+ Roz)? — 2 Ryy Raa +2 (Ri2) ] +v (R11 + Ra2)
D o _ 2 o _ 2
E {[ K11 +/€22 — 2 K11 Koo + 2 (ng) } —V [—2 K11 Koo + 2 (ng) }}
D 2 o 2
=5 { K11 + 522 —2 K11 Raa +2 (R12)” —v {—2 R11 Ra2 +2 (Ri2) ”
D
5 { K11 + Hzg -I- 2 (1 — U) [_Rll K22 + (ng)z} }

D
Oy = —5—

{(Rll +R2)’—2 (1-v) [Rn Rag — (/?&12)2} } (53)

2.2.3 Total Bending Energy

The total bending energy is the integral of the bending energy density over the area
of plate:

U, = / U, dA (54)
S

13



2.3 Membrane Energy
2.3.1 Axial Force

Assume that k.3 = 0. The axial force can be calculated:

[N

E
Nop = 1_,/2/ [(1—v) eap+V eyy bag] dz

__F /
C1=2 )

h

E 2

+1—I/2/h (1 =) Kag +V Kyy dap] 2 dz
-3

h

[Ny L\JI:*

(1 —v) eop+v e, dap| dz

(NI

E (e] [¢] 2
:m[(l—y) op Ve, 5(15}/ dz

N>

E 3
1—12
Eh o o
=T—> [(1 —v) Eap TV E, 5043]

+ (1 —=v) Kag+V Kyy d 5] z dz

—

Here, we define the axial rigidity of a plate C' as follows:

Eh
1—2

Now, one gets the membrane force-extension relation:

C =

Nag = C [(1=v) €55+ &5, dag]

N11 Nio

Nap = N1 Nag

where Ni3 = Noj due to symmetry.

Ni1=C (e9; + v e5)
Nap=C (39 + v €1y)
N12:C (1—V) Eil

2.3.2 Membrane Energy Density

(56)

Using the similar definition used in the calculation of the bending energy density,

the extension energy (membrane energy) reads:

m—fNang

14

(60)



Calculate the energy stored when the extension reaches a given value €7 5. Consider

a straight loading path:
€aB =1 Eap
d@;B = E(Ol/@» dT]

Nag = Nag (£25)
a8 (1 E0p)
=1 Nag (05)

where Nag (5%) is a homogeneous function of degree one.

_ g0
Um: ) Naﬁ (536) dEzB

1
:/0 1 Nag (Eap) Eap dn
1

=5 Nag (E25) €25
1 )
= 5 aB €aB

Un=— [1-v) 8s+vE, bas| Eop
=0 =0 —0 2
=3 {(1 —v) &g iaptv (E,) }
The extension energy expressed in terms of components:
— C —o \2 —o \2 —o —0 \2
Un= {(1=v) [ +2 G+ (5] +v (1 +52)°)

_o0 —o —o \2 —o —o \2
(1-v) [511 +522) — 287189 +2 (812) } +v (8] + &%) }

l\DlQl\DlQMIQ

_0 —o —0 \2 —0 =0 —0 \2
{ gl + 522 — 280185 +2 (E1)" —v [—2 11829 +2 (&79) } }

—0 =0 —o \2
(811 +85) 242 (1-v) {—511522 + (12) ]}

O =~ { € +282)° =2 (1= v) [E515% — E3)°] }

15
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(63)

(64)

(65)



2.3.3 Total Membrane Energy

The total membrane is the integral of the membrane energy density over the area
of plate::

S

16



3 Development of Equation of Equilibrium and Boundary Condi-
tions Using Variational Approach

3.1 Bending Theory of Plates
3.1.1 Total Potential Energy
The total potential energy of the system II reads:

I=U,-V, (68)

where Uy is the bending energy stored in the plate, and V is the work of external
forces.

Bending Energy

1
Uy=— / Mg Kap dS (69)
2Js
1
where the geometrical relation ko5 = —w,,, has been used.

Work of External Forces

Plate Loading Lateral load:

Q(X) = q(xa) (70)

This is distributed load measured in [N/m?] or [Ib/in?] force per unit area of the
middle surface of the plate.

q(x)

The distributed load contains concentrated load P as a special case:
P (20,90) = Pod (x — 20) 6 (y — vo) (71)

where 0 is the Dirac delta function, [zg, yo| is the coordinate of the application of
the concentrated force, and Py is the load intensity.

17



Dirac é-function

Xo

NOTE The shearing loads on the lateral surface of ice are normally not consid-
ered in the theory of thin plates.

Load Classification
e Load applied at the horizontal surfaces.

transverse load

S

e Load applied at the lateral surfaces.

edge force

m T T T * _LL}
@ ‘ﬁ-{-{{ .............. -

edge moment

Loads are assumed to be applied to the middle plane of the plate

NOTE Other type of loading such as shear or in-plane tension or compression
do not deflect laterally the plate and therefore are not considered in the bending
theory.

18



in-plane tension
Or compression

—

7

— -
in-plane shear

Potential Energy due to Lateral Load ¢ Lateral (transverse) load does
work on transverse deflection:

/Sq w dS (72)

This is also called a work of external forces.

Potential Energy due to Edge Moment The conjugate kinematic variable
associated with the edge moment is the edge rotation dw/dz,.

dl

f—— C—

edge moment n

We apply only the normal bending moment M,,,:

/ M,m — dl (73)

where the minus sign is included because positive bending moment results in a
negative rotation and negative moment produces positive rotation.

At the edge, My = 0 and My, = 0.

19



Potential Energy due to Edge Forces

A%wﬂ (74)

Potential Energy due to All External Forces Now, the work of external
forces reads:

Vb:/qwdS /Mnn dl+/V w dl (75)
3.1.2 First Variation of the Total Potential Energy

The total potential energy reads:

n:_l/Maﬁ Wy dS (76)

/qwdS’—l—/Mm—dl /Vnwdl

First variation of the total potential energy J1I is expressed:

__ / My Sw,as dS (77)

/qawds+/Mm5<dw> dl—/f/ndwdl
d.’L’n T

We shall transform now the first integral with the help of the Gauss theorem.
First note that from the rule of the product differentiation:

Mg 6w,ap= (Mo 6W,q ) .3 —Mag,g 0W,a (78)

then
My Sw,s dS = / (Mas S0, ) 5 S — / Mypys Swa dS (79)
S S

Now, the first integral on the right hand side of the above equation transforms to
the line integral:

/Mag dw,ap dS:/Mag dw,o ng dl—/Mag,g ow,o dS (80)
S T S

20



The integrand of the second integral on the right hand side of the above equation
transform to:
Maﬁaﬁ 5w7a = (Moz67ﬁ 5’(11) s _Maﬁaaﬁ ow (81)

which results in:

/Mag dw,ap dS:/Mag dw,o ng dl (82)
S T

_/ (Ma/g,g (511)) o dS—i—/Mag,a/g ow dS
S S

upon which the application of the Gauss rule gives:

/Maﬁ 5w,a5 dS:/Ma/g &w,a ng dl (83)
S r

—/Maﬁ,g oW N dl—i—/Mag,aﬁ ow dS
T S

We can return now to the expression for 611 and substitute there the transformed
first integral:

31— [ (~Mapap —a) S dS (84)
s
+/Ma5,5 oW Ng dl—/Vn ow dl
r r
—/Mag dw,o ng dl—i—/M,m ow,, dl
r r

where dw,, = 0 <(§lT“:L>. It is seen that integrals involving the prescribed forces M,,,,

and Vj, are written in a local coordinate system Ty {xy, z¢} while the remaining
two integrals over the contour I' are written in the global coordinate system x,. In
order to make comparison, we have to decide on one coordinate system. We choose
the local system.

Consider the first integral:

/F (Magss 1) Sw dl (85)

The term in the parenthesis is a scalar quantity and thus remain unchanged with
respect to the rotation of coordinate system. In the local system z, the line
integral becomes:

/ (M.s5.5 1) dw di (86)
I

where v = 1 is the normal direction n, and v = 2 is the tangential direction ¢. The
coordinates of the unit normal vector is the local system are n, {1, 0}. Hence,

/(M75,5 nv) ow dl—/ (Mm,g ny + Mag,s ng) ow dl (87)
r r

- / Mg,s 6w dl
I
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Furthermore, the integrand reads:

Mis,s = Mi1,1 +Mi2,2 (88)
_OMy | OMiy _ OMuy | My

6331 8%2 8wn 8wt
and we call it the shear force in the normal direction n and denote:
Qn = M,s.s 0 ={1, 0} or {n, t} (89)

Now, we can combine two line integrals in the equation of first variation of the total
potential energy:

/ (Qu—Vp) buw dl (90)
I

How the remaining integral is transformed?

/ (Mg 13) S,y dl = / (M. 5 ng) Suw,, dl (91)
T N

Because it is a scalar quantity, we simply switch indices from global system (« and
B) to local (v and ¢). As before ns {1,0} so after summing with respect to d, we
have:

/F(M,yl n1 +M72 77,2) (511],V dl_/Fle (511),7 dl (92)

:/M,yn dw, dl

T

:/ (Mnn 6w,n + M, 6w,t) dl
Iy

The first term can be absorbed with the line integral representing potential energy
of bending moment:

_ /F (Mo — M) S, I (93)

There remains though one integral which does not fit to anything. Since the
boundary term must be equilibrated, it is suspected that this term might belong to
the shearing force term, at least partially:

/ My, dw,; dl transverse term (94)
r

In order to compare this term with the shearing force term, we have to make this
term comparable as far as the kinematic quantity describing variation is concerned.
One integral involves dw and the other one dw,;.. Note that dw, = 0 (dw) /Ox; is
the derivative of the function dw in the tangential direction, i.e. direction along the
curve I'.  This means that we can integrate by parts along I'. Thus,

My, dw,s = (Mtn 5w) st =Myt ow (95)
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/Mtn 5w,t dl = / (Mtn 5w) st dl—/Mtn,t ow dl (96)
r r T

The first term in the right hand is equal to the value of the integrand calculated at
the beginning and end of the integration path:

/F (M ) ¢ dl = My, Su[c"™ (97)

beginning
Consider now two cases.

e The contour I' is a smooth closed curve, so the value at the beginning is equal
to the value at the end:

Mtn 5w| Mtn 0 (98)

end ow |beginning =

The term does not give any contribution.

direction of
integration

«—end

\begining

e The contour I is piece-wise linear or composed of a finite number, k, of smooth
curves with discontinuity. Therefore, the integration should be made in a
piece-wise manner. Thus, the continuation of the beginning and end of each

should be added:
d
Z My, 5w|zgginning (99)
k
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3.1.3 Equilibrium Equation and Boundary Conditions

Now, we can write the final expression for the first variation of II:
5H:/ (—=Mag,ap —q) Sw dS
S
4 / (Qu— V) Sw di — / (Myn — M) S, dl
r r
_ (Z My Sl i — / Myt 6w dl)
. r
:/ (_Maﬁvaﬁ —q) ow dS

S

4 / (Voo — V) dw dl — / (Myn — M) S, I
T r

end
- § My, 5w‘beginm’ng
k

(100)

where V,, = Q,, + My, ,; is the effective shear force.

In order to make the functional II stationary under arbitrary variation of the
displacement field dw, there must hold:

EQUATION OF EQUILIBRIUM

101
Mag,ap+q =0 on S (101)

BounDARY CONDITIONS

My, — M, =0 or ow,, =0 onI
V=V, =0 or ow =0 on I (102)
M, =0 or Sw =0 at corner points

of the contour I

3.1.4 Specification of Equation for Rectangular Plate
Consider a rectangular plate.
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y—n

Boundary Conditions For edges parallel to xz-axis, the normal direction is the

ydirection.
My, — Myy =0
Yy~ Ty =0
where
Ve=Qu +
Vy=Qy+

For edges parallel to y-axis, the normal

o 2y (103)
y
or w=0~0

OMy,

oy

OMy,
oz

direction is the z-direction.

(104)

or g—z =0 (105)

or w=0

(106)

My — Myz =0
Ve—Ve=0
where
Vy=Qy+
Vi=Qz + —F—

Interpretation of Corner Points
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segment [k —1]

¢

segment [k] |_e
3 direction of
integration

4

Boundary condition reads:

S M 6wl g = M 6wl — M 6wl M 6wl — M 5wl (107)
where
swh = suwl? (108)
thus
3 i 80y = - 4 (3 03 50 2] 5 (10

Consider the right angle.

x J [k _ 1]
y
[K]
for the k —1side n=z,t=y (110)
for the k side n=y,t==x
end _
(Mtn 5w|beginning> at the right angle N (Mxy B Mym) ow (111)
Interpretation of Corner Forces Plane stress:
Tyy = Tye  Symmetry (112)
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surface element g,

——

Tyx

Let us place the surface element at the corner.

Ry
F M,

The shearing stresses produce twisting moments which are in the opposite direction:

k—1] _ k
ME = — ] (113)
Therefore, the boundary condition at the corner becomes:

Miy, Sl i = (M = MJE) G0 = 2 Moy w0 =0 (114)

beginning —

Feorner =2 M:cy (115)
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For the Entire Plate

Xy

ZMt

xy

PM

Interpretation of the Effective Shear V,

X
/ ‘ dy
y z Qx

dy
H Mxy
xy ay
Equilibrium reads:
M,

Qu dy + (Mxy + 3ayy dy> — My, (116)

M,

Y

- V:c dy
_ OMy,y

Vo= Qat—5 % (117)
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3.2 Bending-Membrane Theory of Plates
3.2.1 Total Potential Energy
The total potential energy of the system II reads:

H:Ub+Um_%_Vm (118)

where Uy, is the bending strain energy, U,, is the membrane strain energy, V; is
the potential energy of external loading causing flexural response, and V,, is the
potential energy of external loading causing membrane response.

Membrane Strain Energy The membrane strain energy reads:

1 o
Un = 5/51\/,15 Eap AS (119)
where . ,
op = 5 (Uar FUBsa ) + FWsa Wi (120)

Potential Energy of External Forces Evaluation of Boundary Terms

Normal in-plane loading, N,

/N,m Uy, dl (121)
r

where u,, is normal in-plane displacement.

Shear in-plane loading, N

/ N ug dl (122)
T

where u; is shear component of the displacement vector.

Potential Energy of External Forces

Vin = / Ny Uy, dl + / Ny, g dl (123)
r r

3.2.2 First Variation of the Total Potential Energy
The first variation of the total potential energy reads:

STI = (5Uy — 6Vy) + (8Up — 6Vip) (124)

The first parenthesis represent the terms considered already in the bending theory
of plates. All we have to do is to evaluate the term in the second parenthesis.
Here, the first variation of the membrane energy reads:

U, = / Nap 0Aap dS (125)
S
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where . )
dAap = 5 (0Uq,p +0ug,a ) + B (0w,q w,g+0w,3 W,q) (126)

Because of the symmetry of the tensor of membrane forces:
Nag = Nga (127)
by using the characteristics of dummy indices we obtain:
Nop 0ug,a = Nga 6Uug,a = Nog dUa,p (128)
Now, the first variation of the membrane strain energy reads:
oU,, :/S <Na5 B (0Uq,B +0ug,a ) + % (0w,q w,g+0w,3 W, )] > ds (129)
= /S (Nag 6ua,g +Nop w,3 0w, ) dS
Note that the displacement vector has now three components:
{ta, w} (130)
so that there are three independent variations:
{0uq, ow} (131)

We expect those to end up with three independent equations of equilibrium. The
first term of 0U,, reads:

/Naﬂ Sttes dS:/ (N Sia) 55 ds—/Naﬁ,ﬁ Suq S (132)
S S S
—/ Nop duq ng dl — / Nog,p Ouq dS
T S
:/Nw; Ouy M§ dl—/Nag,g OUq dS
T S
:/Nvl Oy dl—/Nag,g dug dS
T S
:/Nw (7 dl—/Na5,5 Oug dS
T S

:/(Nm St + Non 61z dl—/NaM St dS
T S
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The second term of 6U,, reads:
/SNQB w,3 0W,q dS—/S(Nag w,3 W) ,q dS—/S(Nag w,3),q 0w dS (133)

:/FNag w,g 6w g dl—/S(Nag W) e 6w dS
:/FN% w,s dw Ny dl — /S(Noég W, ) o Ow dS
:/FNM w,s ow dl —/S(Nag w,3) a0 W dS
:/F(Nn w1 +Nig wys) 6w dl—/S(Na/,» w,5) s Ow dS
= /F (Npn Wy +Npt wyy ) dw dl — /S (Nop w,38) o 0w dS

Now, the variation of external work reads:
OV = /FN,m duy, dl + /FNm duy di (134)

3.2.3 Equilibrium Equation and Boundary Conditions
The contribution of the term (U, — dV;;,) then becomes:

0 (U — Vi) :/ (Npn 0up + Ny dug) dl — / Nog,p Ouq dS (135)
r S

+/ (Npn Wy + Ny wy ) dw dl — / (Nog W, ) o 0w dS
T S

—/ Nnn 6un dl — / Ntn 5ut dl
T T

_ / Nugsg St dS + / (N — Ny St dl + / (Niw — Nin) Sy dl
S r r

—/ (Nop w,3) o 0w dS + / (Npn Wy + Ny wyg ) dw dl
S r

The first three integrals involve independent variations of u,, i.e. duqg or {duy,, du}.
This gives us two independent equations of equilibrium in the plane of the plate:

EQUATION OF EQUILIBRIUM I

Nog,p=10 on S (136)
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and two additional boundary conditions:

BounDARY CONDITIONS 1

Npn — Ny =0 or Sup, =0 onTl (137)
Ny — Ny =0 or ouy =0 onT

The remaining two integrals involve variation in the out-of-plane displacement
dw and thus should be combined with the equation of equilibrium and boundary
conditions governing the flexural response. The terms involving surface integral
should be added to the equation of equilibrium:

EQUATION OF EQUILIBRIUM II

Maﬂmﬂ + (Noaﬂ w,B ) yatq = 0 on S (138)

where the second term in the left hand is the new term arising from the finite
rotation.

The term with the line integral should be added to the corresponding term
involving variation dw:

/ (Vi + Non Won + Nt wye =V3) dw dl =0 (139)
T

The generalized boundary conditions reads:

BounNDARY CONDITIONS II- (A)

Vn + Nnn W,n +Nnt W, _Vn = 0 or (5’[1) = O on 1_‘ (140)

where the second and third terms in the left hand side of the first equation are the
new terms arising from the finite rotation.

If the boundaries of the plate are kept undeformed w,; = 0 (simply supported
or clamped plate), then the boundary condition is satisfied:

Vo + Nop Wy, =V =0 or éw=0onT (141)
Physically, the additional terms represent the contribution of the axial force to the
vertical equilibrium. Using the in-plane equilibrium, N,g,53 = 0, the out-of-plane

equilibrium can be transformed to the form:

Mag,ap +Nagsa W,5+Nag Wap+q=0 on S (142)
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EQUATION OF EQUILIBRIUM II’

143
Moprop +Nap Wiap+q =10 on S (143)

which is called as the von Karman equation. Note that N,g is related through the
Hook’s law with the gradient of the in-plane displacement w,, i.e. Nog = Nag (ta)-
Therefore, the new term N,5 w,q3 represents in fact coupling between in-plane and
out-out-plane deformation.

To make derivation complete, the final boundary conditions which do not changed
from the bending theory of plate are presented:

BounpARY CONDITIONS II- (B)

M,,, — M,,,, =0 or ow,, =0 onT ‘ (144)
at corner points

My =0 ot ow =0 of the contour I
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4 General Theories of Plate

4.1 Bending Theory of Plates
4.1.1 Derivation of the Plate Bending Equation

Then, groups of equations!

e Equilibrium

Mogap+q=0 on S (145)

o Geometry
Rag = —W,ap (146)

e Elasticity
My =D [(1-V) Ko+ V Kyy dap] (147)

Eliminating curvature ko3 between Eq. (146) and (147), we obtain:
M.s=-D (1—-v) Wy TV Wiyy 5aﬂ] (148)
Substituting Eq. (148) into Eq. (145) reads:

-D [(1 - V) W,ap +v W,y 5aﬁ] saB +q =0 (149)
-D [(1 - V) W,aBaf TV Wiyyas 5&B] +q=0

Note that the components of the Kronecker "d,3" tensor are constant and thus are
not subjected to differentiation:

10 1 ifa=4
5&/3:‘01‘ or 5a5:{0 if o £ (150)

Also, note that only these components:
Uag 0ap = Uaa (151)

survive in the matrix multiplication for which o = 8. Therefore, Eq. (149) now
reads:
—D [(1 - V) W,aBaf TV ww’yaa] +q=0 (152)

Because "vv" are "dummy" indices, they can be replaced by any other indices, for
example "55."
-D [(1 —v) W,aBaB TV wa,@ﬁaa] +q¢=0 (153)

The order of differentiation does not matter:

W,aBap = WraaBB = W,BBaxa
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Thus, two terms in Eq. (153) can now be added to give the plate bending equation:

D w,0088 = ¢ for a,3=1,2
Here, the index notation can be expended:
W,qaB8 = W,1188 TW,22383

=w,1111 TW,2211 +W,1122 +W,2222
=w,1111 +2 w,1122 +W,2222

Now, letting "1 — z", "2 — y" leads:

Otw o*w o*w
b <8x4 +20x28w2 * 8y4> =a(zy)

Alternative notation can be:

D Viw =
where Laplacian V2w reads:
Pw  Ow
2 e — _—
Viw = Ox2 + Oy?
and bi-Laplican V4w reads:
Viw =V? (Vw)
0? 9 0? 9
:@(V w)+8—y2(v w)
P (w0 (P o
C0x2 \ 022 Oy? oy? \ 022 0y?
0*w 0*w 0*w

= 2
Ox? + 0x2022 + oy*

4.1.2 Reduction to a System of Two Second Order Equations

Denote
D w,po=-M

Then, from the equilibrium equation:

(D w,aa].88=¢

)

(154)

(155)

(156)

(157)

(158)

(159)

(160)

(161)

we obtain a system of two linear partial differential equations of the second order:

M,p5=—q
D w,pa=-M
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or

92M 62M
+ =—
{ oo ; (163)
(6x2 + d_>
What is "M" 7 Let us calculate Mq:
Moo = M1 + My (164)
=D [(1 — I/) K11 + vV (511 + 522) 511]
+D [(1—v) ko +v (K11 + K22) 022]
=D [(1+v) (k11 + K22)]
=D (14v) Kaa
or M
2 =D koo = —D wWqa=M (165)
1+v
Therefore,
Moo =M (1+v) (166)
=D koo (1+4v)
Now, moment sum reads:
M =D Kaa (167)
and in expanded notation it reads:

4.1.3 Exercise 1: Plate Solution
Consider a simply supported plate.

Square plate (axa)

a

v
=

36



Boundary Condition General boundary condition reads:

(Mnn - J\_{nn) wy,,=0 onl

(Va=Vp) w=0 onT (169)
My, =0 =M;,=0 onT
w=0 onI (170)
w=0 a z=0andz=a,0<y<a (171)
w=0 at y=0andy=a, 0<2x<a
My =0 at x=0andx=a, 0<y<a (172)

My,=0 at y=0andy=a, 0<z<a

Loading Condition Assume for simplicity the sinusoidal load distribution:

q(z,y) = qo sin (ﬁ> sin (M> (173)
a a
where qg is a pressure intensity.
Solution of Problem The solution of the form
w(x,y) =wp sin (H> sin (M> (174)
a a

satisfy both the boundary conditions and the governing equations (see below).

Plate Bending Equation Substituting Eq. (173) and (174) into the plate bend-
ing equation (156), one gets:

(o) 2 () @)]-npn () ()
(190 (3)' 0 in(52) n (2

In order to satisfy the above equation for all values of x and y, the coefficient in
the bracket must vanish. This gives:

wo = 30 (2)4 (176)

where D = (ER®) / [12 (1 — v?)].

Bending Moments The various bending moments are given by:

0 (175)

0

Mo=-D [55+0 28] =D a+0) (2)7 wo sin (TE) s (TLYarn
=0 (g5 v ] =0 e (7)o () s (1)
Myy=—-D (1-v) gjg}y =—-D (1-v) <§)2 wp C€OS (%) cos <7T71y>
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Shear Components The shear components (), and @, are:

OMyy  OMy,
T = 1
Q 5 a (178)
_ OMyy | My
A

Now, using the previously obtained bending moments, we get the shear components
in the interior of the plate:

Q.=2D (§>3 wy COS (%) sin <7r7y> (179)

0r=20 (3) won () s (52)

Effective Shear Components Next, let us computer the effective shear com-
ponents:

_ OMy,
Ve=Qu + 9 (180)
oM,
Vy=Qy+ Ox )
Using the previous results, we get:
3
Ve=B8—-v) D (g) wp CoS (%) sin (%) (181)
3
Vy,=0B8-v) D (g) wp sin (%) cos (%)
We now need to evaluate the effective shear on the boundaries:
/(6= D0 (®)°] | v/ [6-» D (3)]
z=0 wp sin (WTy) 0
r=a —wp sin (=) 0 (182)
y=20 0 wo sin (’TT“’”)
y=a 0 —wq sin (Tx)

Because our sign convention is:

positive shear

% |

l_ﬂ
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in our case, shear along the boundary is:

}

From the above results, we can plot the shear distribution:

Force Balance Integrating the effective shear along the boundary, we get:

a 3 a
R:/Vn dxt:4/ Val,_o dy=4 (3—v) D (f) wo/ sin (H> dy (183)
L 0 0

a a

Then, the reduction force due to effective shear on boundaries reads:

R=2 (3-v) g (&) (184)

Now, let us complete the total load acting on the plate:

P:/Sq(x,y) ds = /Oa /ano sin (%) sin (7773/) dx dy (185)

Then, the total external load acting on the plate reads:

P=4q (&) (186)

Notice that R and P do not balance! We did not include the corner forces. These
are given by:
(FCOTTLET)mO,yO = 2 (Mxy)‘m:zo’y:yo (]‘87)
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Because of the symmetry, all four forces are equal. So, compute the corner force
at v =y =0, (Fcorner)070:

(}'ﬂcmaner)()’0 =2 [ cos <%) cos <W—y)} ’070 (188)

=—2D (1-v) (z)Q wo

Now, the vertical force balance is satisfied:

R+4 Feprper = P (189)

2 B3—=v) q <2>2— 8D (1-v) <%)2 wo=4 qo (%)2 (190)

2 3—=v) qo (%)2— 2 (1-v) q (2)2:4 9 (%)2

4.1.4 Exercise 2: Comparison between Plate and Beam Solution

Plate Solution For a square simply supported plate under loading gpiqze (,y)
given by:

. (TxT\ ., (TY
Aplate (ﬁ,y) = (QO)plate Sin (T) Sin (T) (191)
we found that the plate deflection is:
L /Tx\ . [Ty
Wpiate (T,Y) = (W0) pgze SID (T) sin <T> (192)
with:
(QO)plate a\4
(wo)plate - 4 D <;) (193)
~ 3 (1=v) (90),pate (3)4
N E h3 T

For the plate, the total load is given by:

“re L (mTN\ . (T
Pplate :/ / (qo)plate Sin (—) Sin (_@/) dy dx (194)
0 Jo a a
a\ 2
=4 (qo)plate (;)
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Wide Beam Solution For a wide beam under line loading given by:

Gieam () = (@0)peam 50 (=) (195)

we need to compute the central deflection (wp)y,,,, from:
E1 wgélam = Qbeam (x) (196)
where I = ah3/12. Assuming the deflection wpeqm ():
i x
Whearn (2) = (100) gy sin () (197)
we get:
T\ 4 X T
21 (3) (%) - n () 198
e (wo)beam s a (qo)beam S a ( )
Thus,
_ (qo)beam a\4
(wﬂ)beam - E T (7.[.> (199)
— 12 (qo)beam (2)4
Eah3 T
Now, let us compute the total forces:
@ . (T X
Pyeam :/ (qo)beam sin (7> dx (20())
0

a
=2 (qo)beam ;

Comparison For both total forces to be equal, we need to have:

Pplate = Pbeam (201)
a\? a
4 (qo)plate (;) =2 (qo)beam ;
a
(qo)beam =2 (qo)plate ; (202)

With a concentrated load, the beam deflection now becomes:
(q0),, a\4
(100 ), = bz (2) (203)
o % (qo)plate (2)4
7 ER \x
We now can compute the ratio of central deflections:

3 (1_V2) (QO) ate 4
o= (wﬂ)plate _ Tplt (%) (204)
(W0)pearm 28 Whatate (a1
T 2
:g(l—y ) ~ (.36

The above equation means that under the same total load, a plate is three times
stiffer than a wide beam. The ratio a will vary slightly depending on the load
distribution (sinusoidal, uniform, concentrated load, etc.).
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4.1.5 Exercise 3: Finite Difference Solution of the Plate Bending Prob-

lem
Governing Equations read:
VM = —q
2 _ M (205)
Vew = -
or in the component notation they read:
02M . 0°M
> + 3 — —q
Fu , o _ _u (206)
92 T o2 = 7D
where M is the moment sum defined by:
MOéOé
=2 _D 207
1+v fiaa (207)

Case of Simply Supported Plate The boundary condition of a simple sup-
ported plate reads:
w=0 on T (208)
M,,=0 on I

a
X
a
I n
y
For sides parallel to z-axis (thick lines), one gets:
Myp = My, =0 (209)
dw d>w
From the general constitutive equations,
Myy =D [kyy +V Kaz] (211)

0=D [Kyy +v-0] — Kyy =0

Therefore,
M =D [kqa+kpsl=D [04+0] =0 (212)
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Similar derivation can be performed for two edges parallel to y-axis.

0.
conditions hold:

2M | 92M :
022 + dy? = —q m
M=0 on
9? 9? M :
a—;zu + 8—;;’ = - D m
w=20 on

Then, M =

It can be concluded that for a simply supported plate the following boundary

i (213)
i (214)

Therefore, the above two boundary value problems are uncoupled.

The Finite Difference Technique An approximation to the first and second

derivatives.

n+1

wom o+l

m+1

backward
%~ An—1

h

%
dx
%
dx

n
forward
. An+l T Zn

h

n+1
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= i [%] (216)

dz? ., dr |dv
d d
h
Zn+1—Zn Zn —Zn—1
- h
_ An+4l — 2 zp + Zp—1
— h2
i'; _ Zmt1 72 ot o) (217)
dy?|,, h
0%z 92z
Vie=o5 + 55 218
i 0y? (218)
1
— ﬁ (zn—‘rl -2 Zn + Zn—1 + Zm+1 — 2 Zm —+ Zm—l)
C) Top
h
h ho~
Left ~ "0 Right
h
D
Bottom
1
Vi = 5 (21 + 28+ 20+ 2r — 4 20) (219)

Divide the plate into sixteen identical squares and distinguish six representative
nodes: three in the interior and three at the boundary. Because of symmetry, it is
enough to consider only an eighth of the plate.
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Four axes of symmetry

Determination of Moment For each interior point (1, 2, 3), we write equation
V2M = —q. For each boundary point (4, 5, 6), we write boundary condition
M = 0 (uniform pressure).

q a®
Point 1: 4 My —4 My = TS (220)
q a?

Point 2: M1+M4—|—2M3—4]\42:_T

q a®
Point 3: 2M5+2M2—4M3:_1_6
Point 4: My=0
Point 5: Ms =0
Point 6: Mg =20
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Substituting three last equations of Eq. (220) into the first three equations of Eq.
(220), one ends up with the following system of linear algebraic equations:

»

4 My —4 My = — 18
2

My +2 M3—4M26:—q1‘é (221)
2 My —4 My = -2
whose solution is:
My = 1—28 q a® (222)
Ms = 1_;8 q a®
M3z = 21_516 q a®

At the plate center, M,, = M,, so that:

M = 22
1+v 1+v (223)
1
My, = 3 (I1+v) M (224)
At the center, M = M, thus,
1
1 9 9
3 (1+v) 1o 49
=0.0457 q a?

This is 4.6% less than the exact solution which is (M)
the text book.

, = 0.0479 ¢ a? from

exac

Determination of Deflection For each interior point (1, 2, 3), we write equation
V2w = —M/D. For each boundary point (4, 5, 6), we write boundary condition
w = 0.

. M a? 9 qa’?\ a?
Point 1: 4 —4 = =1 ) = 29
o e TG (128 D) 16 (226)
. M, a? 7 qa®\ d?
Point 2: w1+w4+2w3—4w2_—61—6__(1_28? 1_6
. M3 a? 11 qa®\ d?
P : 2 2 —4 = | — — -
ome 3 Wa s w2 AW = TG (256 D ) 16
Point 4: wyg =0
Point 5: ws =0
Point 6: weg =0
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Similarly,

4wy =4 wr = _20948%
4
w42 ws — 4wy = —5z L5 (227)
4
2 w9 — 4 ws = —ﬁ %
Finally, the finite difference solution is:
33 ¢ a* qat
=1 —0.00403 1— 22
W= 06 D 0.00403 5 (228)
3 qgat qat
=——— =10.00293 —
=g p - 0
35 qat q a*
=——-— =10.00214 —
“s=1gzes p M D
On the other hand, the exact deflection of the center point is:
q a*
(wl)exact = 0.00416 T (229)

Thus, the error of the finite different solution is 3.1%.
4.2 Membrane Theory of Plates
4.2.1 Plate Membrane Equation

Assume that the bending rigidity is zero, D = 0. The plate becomes now a
membrane.

e Equilibrium of in-plane equation
Noga=0 on S (230)
Equilibrium of out-of-plane equation

Nag W,ag+q=0 on § (231)

e Strain-displacement relation

R 1 1
€ap = 5 (Uasp Fasp) + 5 Wa Wi (232)
e Constitutive equation
Na5 =C [(1 - V) 835 +v €,OW 5(1,6] (233)

where C' = Eh/ (1 —v?).

This is a non-linear system of equation which is difficult to solve. Note that
corresponding system of equation for the plate bending was linear.
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4.2.2 Plate Equation for the Circular Membrane

Cylindrical coordinate system is composed of w,, ug, u, = w.

e Equilibrium of in-plane equation

aNrr
or

r 4+ Ny — Ngg =0 on S

Equilibrium of out-of-plane equation

0 ow
E[NTTET]—H"(]O on S

e Strain-displacement relation

e Constitutive equation

Nrr =C P\rr +v )\99]
Ngo=C' [Agg + v Ary]

where C' = Eh/ (1 —v?).

(234)

(235)

(236)

(237)

4.2.3 Example: Approximation Solution for the Clamped Membrane

Consider a circular plate with the clamped support.
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Membrane Solution From the symmetry and clamped boundary condition, the
radial displacement wu, reads:

u (r=0)=0 (238)

up (r=a)=0
Thus, as a first approximation, it is appropriate to assume:
ur =0 for 0<r<a (239)

Then, the hoop strain vanishes:
ggg =0

Now, the radial force and the radial strain component become:

Ny =C &y (240)

1 /0w\?
Erp = 5 <E> (241)

With the assumption u, = 0, the in-plane equilibrium equation can not be satisfied.
Consider out-of-plane equilibrium equation only. Substituting Eq. (240) and
(241) into Eq. (235), one gets:

9 |C (ow\* ow
Integrating both sides once with respect to r reads:
C ow\® r?
5 7 <E> = - Tq+c1 (243)

aa—/l;j pr— a,t T = (244)
=c1 =0
Then, Eq. (243) can be written:
ow Jjar
= 31 245
or C (245)

Integrating the above equation again reads:

3
wz_zﬂ%#ﬁ+@ (246)
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The integration constant ca can be determined from the zero deflection condition
at the clamped edge:

w=0 at r=a (247)

_§ 3/ 4 4/3
:>62—4 Ca

Recalling the definition of the axial rigidity C' = Eh/ (1 — 1/2), Eq. (246) can be

put into a final form:
w 3 3/(1-12) qa r\4/3
a 4 Eh ! (a) (248)

~0.73 ¢ 2—2 [1 - (2)4/3}

In particular, the central deflection w (r = 0) = wy is related to the load intensity
by:

—0-0.73 ¢1= (249)

Bending Solution It is interesting to compare the bending and membrane re-
sponse of the clamped circular plate. From the page 55 of Theory of Plates and
Shells (2nd Ed.) by Timoshenko and Woinowsky-Krieger, the central deflection of
the plate is linearly related to the loading intensity:

3
wo qa
a 64D (250)
_3 (1—1/2) q 7ra\3
16 E (h)
q (a\3
~0.17 <E>
Assume that a/h = 10, then Eq. (250) yields:
wo qa
= 7= 251
a 7E h (251)

Comparison A comparison of the bending and membrane solution is shown in
the next figure.
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It is seen that a transition from the bending to membrane response occurs at
wp/a = 0.15 which corresponds to wg = 1.5 h.  When the plate deflection reach
approximately plate thickness, the membrane action takes over the bending action
in a clamped plate. If the plate is not restrained from axial motion, then the
assumption u, = 0 is no longer valid, and a separate solution must be developed.

4.3 Buckling Theory of Plates
4.3.1 General Equation of Plate Buckling

e Equilibrium of in-plane equation
Nog,a=0 on S (252)
Equilibrium of out-of-plane equation

Mog,0p +Nap Wyap+qg=0 on S (253)
e Strain-displacement relation

o1 1
o = 3 (a8 +Ua,g) + 3 Wa Wp (254)

Kap == Wsap
e Constitutive equation for axial force and axial strain
Nop=C [(1—v) eop+v e, das) (255)
where C' = Eh/ (1 — v?), and another one for moment and curvature
My =D [(1 —V) Ko+ V Kyy dap] (256)

where D = ER?/ [12 (1 —1?)].
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By combining Eq. (254) and (256), one gets:
Mug,ap= —D W,aaps (257)
Substituting Eq. (257) into Eq. (253) leads:
—D w,q088 +Nap Wiap+q¢=0 on S (258)
The buckling problem is specified by:
g=0 (259)

Now, changing signs leads the general out-of-plane equation for the buckling of
the plates:

D w,0088 —Nag W,ag =0 (260)

where the second term in the left hand is non-linear due to N,g which should be
obtained from:

Nog,a=10 (261)

4.3.2 Linearized Buckling Equation of Rectangular Plates

The nonlinear buckling equation can be separated into two linear equations: one
for in-plane equation for N,g and another one for w.
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T > X
P —= i -— P
C—] | |——
— : |
b
"
Yy
PX
A ,
U
Post-buckling
(6w =0)
k
F 2
Pre-buckling
(6w =0)
k
‘S > U

Pre-Buckling Problem Recall that:

o 1 [0us  Oug 1 ow Ow
faf T 3 (8375 8aza> T3 Oz, Oxg (262)
Eh o o
Naﬂ = m [(1 — V) Eocﬁ + v E’Y’Y 50&5] (263)

In the pre-buckling problem, the linear equilibrium equations are obtained by
omitting the nonlinear terms in the governing equations Eq. (260) and (261). The
resulting equations are now:

D w,qap=10

Nog,p=0

For the pre-buckling trajectory, dw = 0, one gets the equilibrium equation:

Nog,p=0 (264)
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where
Eh

Naﬂ = m [(1 — V) EZB +v E,Oy,y 60{5] (265)
1 (Ouq = Oug
== =—+= 2
fas = 3 (axﬁ - 8xa> (266)
and boundary condition:
(Nm — ]\_fnn) oup, =0 onT (267)

Here, it is assumed that the unknown membrane force tensor N,z is equal to
the similar quantity known from the pre-buckling solution V] L

NO&B — _N(EIB

where the compressive pre-buckling membrane force are defined as positive.

Post-Buckling Problem Now, the governing equation for buckling of plates
reads:

Boundar
4 o _ Yy
D Vw4 Nog was = 4 Conditions (268)
where membrane force tensor in the pre-buckling solution N ;B is defined as:
- Nz N,
N2g=ANyg=X | 269
s o ‘ Nyz Nyy (269)

where ]\_fag is the known direction from the pre-buckling analysis, and 7 is unknown
load amplitude. Now, the nonlinear buckling equation becomes a linear eigenvalue
problem:

D V*%0 + A Nog w,ap =0 (270)

where A > 0 is eigenvalues, and w is eigenfunctions.
4.3.3 Analysis of Rectangular Plates Buckling

Simply Supported Plate under In-Plane Compressive Loading Consider
a plate simply supported on four edges. The plate is subjected to an in-plane
compressive load P, uniformly distributed along the edges = = [0, a.
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From equilibrium equations, one gets:
o _ ‘ Ny, Ny,
| Ny Ny,
]\:] Tx ]Sf Ty
Nyz Nyy
)
0

=A

P, 1
b |0

Introducing Eq. (271) into Eq. (268) leads:

P,
DV4w+T‘T Wyge = 0

Boundary condition for this simply supported plate are written as:

w=0 on I
My, =0 on I

where the moment components read:

My, =—-D (wch FV W,y )

=0
Myy=—D (W,yy+V W,z ) =0
Thus, one gets:

W=W,50=0 on z=[0,a]

W= W,yy =0 on z=10,0b]

(271)

(272)

(273)

(274)

(275)

Equation (272) is a constant-coefficient equation, and a solution of the following

form:

Lo/mT TN .
w = ¢ sin sin
a

95

(n;}ry) for m,n=1,2

(276)



satisfies both the differential equation and the boundary conditions. Introduction
into Eq. (272) gives:

p (5 2 () () ()] R () =0 e
= e GIE T ™

where for the discrete values of P, Eq. (272) has nontrivial solutions. The critical
load can be determined by the smallest eigenvalue, i.e. n = 1 for all values of a:

o GG e
52 () @ ()]

_7r2D mb+ a \?2
b2 a mb

Now, the critical load (P,),., can be written as:

(Pe)ey = ke (280)

where
m b a

ke = <T + m>2 (281)

where coefficient k. is a function of aspect ratio a/b and wavelength parameter m.
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For a given a/b, m may be chosen to yield the smallest eigenvalue. In order to
minimize k. in Eq. (281), treating m as a continuous variable produces:

Ok. mb a b a B
am—2<7+m) (5‘—bmz>—0 (282)

where the first bracket can not be zero, so the second bracket should be zero:

b a1l
2 2= = 2
= iy 0 (283)
Now, one gets:
O
b (284)
ke=4

Here, this is valid when a/b is integer and when considering a very long plates.
Transition from m to m+1 half-waves occurs when the two corresponding curves
have equal ordinates, i.e. from Eq. (281):

Feln = el (285)
mb a (m+1)b a
= 2
¥ a +mb a +(m+1)b (286)
= %: m (m+1)
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m (m+ 1) (287)

Example 1 Form =1, a/b=+/2

Example 2 For a very large m, i.e. a very long plate, a/b ~m. Thus, k. =4 is
now independent of m.
A wvery long plate buckles in half-waves, whose lengths approach the width of the

plate:
e i () ()
w=c sin{—-)sin 2

Thus, the buckled plate subdivides approximately into squares.

Various Boundary Conditions of Plate under In-Plane Compressive Load-
ing The critical buckling load reads:

2
= D
(P x )cr = kc b
16
14
12 |
10 ¢ ¢
c A o B
Kk | sS C
° \/\/\/\_/\W - - e &
\ e ]l
= —_— —
6 /\_/\___\_,\/\ Slpe | =
4
Loaded edges clamped.
Loaded edges simply supported.
2 -
0 1 1 1 1
0 1 2 3 4 5
_a
b

Figure by MIT OCW.

Influence of boundary conditions on the buckling coefficients of
plates subjected to in-plane compressive loading
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Various Boundary Conditions of Plate under In-Plane Shear Loading
The critical buckling load per unit length reads:

w2 D
(wa)cr = ke b2
A
15 —
2
nD
Tor = k
13 — e, ¢
Clamped Edges
11 —
ke 91
Simply Supported Edges
7 —
5 —
3 | | | | |
0 1 2 3 4 5 >
a
b

Critical values of shear stress for plates subjected to in-plane loading.

Figure by MIT OCW.

Limiting Case: Wide Plates Consider a wide plate for which a/b < 1. From
the diagram, we see that if a/b < 1, then m is set to be equal to unity, i.e. just one
wavelength in the x-direction.
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The buckling formula thus becomes:

(288)

If a/b < 1, then the second term in the bracket can be neglected so that the
buckling load per unit length becomes:

which is called Sezawa’s formula for wide plates.

Example 3 Here, relative merits of stiffening a large panel are investigated in the
longitudinal or in the transverse direction. It is assumed that the stiffeners provide
for a simply supported boundary conditions.
Consider the case of longitudinal stiffeners.
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From the von Karman formula, the buckling load per unit length for each divided
part reads:

47?2 D
(Na)or = =5~
Now, the buckling stress can be calculated:
(Nz)
(U cT)longitudinal = h =
B 472D
-~ s2h
Consider the case of transverse stiffeners.
L
prd ~N
~ 7

cr

EXRREAN
SRRRE

From the Sezawa’s formula, the buckling load per unit length along the loaded edges
reads:

72D
(Nfﬂ)cfr = 5_2
Now, the buckling stress can be calculated:
(Nar)
(O'CT)transverse = Z =
_ 72D
~ s2h

Thus, it is concluded that

(Ucr)longitudinal =4 (Ucr)transverse

This shows advantages of longitudinal stiffeners over transverse stiffeners.
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4.3.4 Derivation of Raleigh-Ritz Quotient

Recall the total potential energy of system and other corresponding definitions:
= (Up—=Vp) + (Un — Vi) (289)

where each term for buckling problems will be discussed in the following.

Term Relating to Plate Bending Response In the buckling problem, the
work done by external load causing bending response considered as zero:

V=0 (290)
The bending energy can be expressed:
1
Uh=75 /S Mo Kag dS (291)
D
=3 i (1 =v) Ko+ V Kyy 6ap] Kap dS
D
= E/s [(1 — V) Kagkag +V (/@77)2} as
D 2
=3/ [(1 —v) (k11k11 + K12k12 + Ka1k21 + Keakaz) + v (K11 + K22) ] dS
D 2 2
=3/ {(Hn +ko2)" =2 (1 —-v) {%11 K22 — (K12) }} as
Here, the term in the square bracket is called Gaussian curvature:

k11 koo — (K12)? = K1 KIT (292)

where k; and kj; are the principal curvatures. For plates with straight edges,
Gaussian curvature vanishes, so one gets:

D
U, = 5/ (K11 + K22)2 ds (293)
S

The integrand of the above equation can be written in terms of the transverse
displacement:

(K11 + K22)” = (—V2w)2 (294)
= V2w Vw

Now, the bending energy reads:

D
Up =~ / V2w V2w dS (295)
S
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Term Relating to Plate Membrane Response The work done by external

load causing membrane response reads:

Vm:/Nnnundl+/Ntnut dl
r r

(296)

In the buckling problem, the axial force N 25 = )\]\7&5 is determined from the
pre-buckling solution and is considered as constant, so the membrane energy reads:

Un = —)\/ Nog €55 dS
S
~ 1 1
= _>\/ Nocﬁ |:_ (uaaﬁ +’LLa,ﬁ) + - Wia ?,U,B:| as
S 2 2
s N [ -~
:—)\/Nag Ua,B3 dS——/Nag W,o w,3 dS
s 2 Js
Here, the first term can be extended in a similar way shown in Eq. (132):
—A/ Nog Uans dS = —)\/ (Nm Un + Nin ut> dl
S r
—A/Naﬁ,ﬁ Uq dS
S

_ _)\/F (Nt + N )

where the in-plane equilibrium is applied:
X Nagys=0

Now, the membrane energy can be expressed:
- - A [~
U, = —/\/ (N,m tp + Ni ut) dl -5 / Naog Wy w5 dS
r S
Thus, the term relating to membrane response can be summarized:

. 5 N [ -~
U, — Vi = —)\/ (Nm U + Nin ut> dr— 2 / Nug W w,g dS
r 2 Js

_/Nnn Un dl—/Nmut dl
I I
:/F (—A N, — N,m> up dl — /F <—>\ Ny — Nm) g dl

—A/Nag W,o w,g dS
2 Js

A -
:_§/No¢5 W, W,
S

where the boundary conditions on I' are applied.
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Total Potential Energy and Its Variations Now, one gets the total potential
energy:

= (U, = Vp) + (Un — Vi) (302)
D -
:—/ V2w V2w dS — 3/]\7&5 W, W, dS
2 Js 2 /s
The first variation of the potential energy can be obtained:
D
ol =— / (6 (VPw) V2w + V?w § (VPw)] dS (303)
s
_% / Naﬁ (5w,a W,3 +W,q (511),5) dS
s
:D/ Viw § (VZw) dS—A/NaB W, Sw,s dS
s s
—D/ V2w V2w dS — )\/ Nop w,q Sw,g dS
s s

where Nag is considered as constant under the variation. Similarly, the second
variation of the potential energy reads:

5’1 =D / § (V2w) V6w dS — A / Nug 6w,q dw,s dS (304)
S S
D/ V2w V6w dS—/\/Nag Sw,o Sw,s dS
S S

Raleigh-Ritz Quotient Application of the Trefftz condition for invertability,
6211 = 0, determines the load intensity:

D [ V?w V3w dS
 [4Nug Sw,e dw,s dS

Here, choose a trial function for w:

(305)

w=A¢ (306)

where A is the undetermined magnitude, and ¢ = (Ab(x,y) is a normalized shape
function. Then, the variation of the trial function reads:

Sw =254 ¢ (307)
Now, the load intensity reads:
N ng V2(0A ¢) V?(0A ¢) dS
Js Nap (0A ¢) 0 (0A $),5 dS
_DJs 4 V2¢ 6A V%3¢ dS
JsNap 0A 6.0 6A 6,5 dS
_D fs V3¢ V3¢ dS
JsNag o ¢5 dS

(308)
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The Raleigh-Ritz quotient is defined as:

D[y V9 Vg dS
fSNozB d)aa d)aﬁ as

(309)

Example 4 As a special case, consider 1-D case:
- 10
Nop = )o 0

then, the Raleigh-Ritz quotient becomes:
B Dfs V2 V3¢ dS
 Js(6w) dS
Example 5 Similarly, consider 2-D compression case:

10‘

Nag =das = |

then, the Raleigh-Ritz quotient becomes:
N e D [ V2 V3¢ dS
Js®a b dS
D[y V26V dS
Js |62 + (6] ds
4.3.5 Ultimate Strength of Plates

The onset of buckling stress o.. does not necessarily means the total collapse of the
plate. Usually, there is redistribution of stresses, and the plate takes additional
load until the ultimate strength o, is reached.

Von Karman Analysis of the Effective Width For a simply supported plate,
the buckling load is:

472D

P, = Wb (310)

B Am’E  h3

C12(1—-v2) b

and the corresponding buckling stress is:
Pcr

= 311
Ocr bh ( )

__4an®E (h\?
S 12(1—v2) \b

st (5)
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The normalization of buckling stress by the yield stress reads:

G ™ E (D)’
oy 3(1—-1v2)o, \ b
(1.9)

("

where 3 is a non-dimensional parameter defined by:

_ Joyd
B = Eh

(312)

(313)

(314)

The relation between the normalized buckling stress versus /3 is plotted in the next

figure.

On further loading the plate beyond o.r, a greater proportion of the load is
taken by the regions of the plate near the edge. Von Karman assumed that these
edge regions, each of the width befs/2, carry the stress up to the yield while the

center is stress free.
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Before Buckling After Buckling
by by
2 2
«—> «—>
5 \/ i | |

Actual Stress von Karman Model

The edge zones are at yield, i.e. 0. /0, = 1, but the width of the effective
portion of the plate is unknown:

o (1.9)?
G—CT =— 3= 1 (315)
Y Ty [ Deff
# ()
from which one obtains:
berr =19 h £ (316)
Oy

Taking, for example, E/o, = 900 for mild steel, one gets:
befr = 1.9v/900 = 57h (317)

This is somehow high, but there is not much difference from the empirically deter-
mined values of b,y = 40h ~ 50h.
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The total force at the point of ultimate load is:
P=oybeysh

Now, the average ultimate stress can be calculated:

_r

~ bh
be

= O'y l')ff

=19 %\/an

The average ultimate stress can be normalized by the yield stress:

Ou

h
Tu _ 1 grVE%y
Oy Oy
oy 19
oy 15}

3

(318)

(319)

(320)

(321)

Comparison of the ultimate and buckling load solution is shown in the next

figure.

68



cr [

3 '
— “cr‘r",.’ Buckling Load
- - ou.’oy: Ultimate Load
Eal 2 i
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°=
5
‘9)\
b:
‘l -------------------------------------------------------
0
0
Thick plates yield Thin plates buckle
before buckle. < > before reaching

ultimate load.

Under the uniaxial loading, the relation between an applied load and the cor-

responding displacement is schematically shown all the way to collapse in the next
figure.

P

X

’
U
’

B / post-buckling

pre-buckling

Empirical Formulas

e Foulkner correction

collapse
or crash
MX
2 1
Tu_Z (322)
oy B B
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e Gerard (Handbook of elastic stability)

h2 5 0.85
Tu —0.56 (9—1 /—) (323)
oy A\ oy

where ¢ is the sum of the number of cuts and the number of flanges after the
cuts, A is the cross sectional area A = bh, and the coefficients 0.56 and 0.85
are empirical constants.

Example 6 Consider a plate which has one cut and two flanges.

L >
i
/; Th
Then,
g=1+2=3
Now,
a2 (B 0.85
Tu —0.56 (— —)
oy bh \| oy
y B 0.85
1 <_, /_)
b\ oy
1.42
= 3085

Modifications in Codes In the original von Karman formula, the effective width

ratio reads: )
Jeff . [%er (324)
b oy

In the ANSI specification, imperfection is considered:
b
it 2 <1 —0.218 %> (325)
o

In UK specification, the effective width ratio is defined as:

—-0.2

1+14 <\/g - 0.35> 4] (326)
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A comparison of theoretical (von Karman) and experimental
predictions for the effective width in compressed steel plates

4.3.6 Plastic Buckling of Plates

Stocky plates with low b/h ratio will yield before buckling at the point B. After
additional load, the plate will deform plastically on the path BC until conditions
are met for the plate to buckle in the plastic range.

3

Stowell’s Theory for the Buckling Strain Stowell developed the theory of
plastic buckling for simply-supported square plates loaded in one direction.
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thickness h

The critical buckling strain €., was derived by him in the form:

72 (h\?
o= (5) [+ VITIETE] @21

where the tangent modulus E; and the secant modulus Ey are defined by:

do

E,=—
t de )

g
B, =~ (328)

v

For the materials obeying the power hardening low:

oo (f) (329)

where o, and €, are the reference stress and strain. Now, the tangent and secant

modulus are:
d TL—].
=2 =nZ (3) (330)



Substituting these expression back into the buckling equation (327), one gets:

2

cr = 5 <%>2 (24 VI 3n) (331)

The exponent n varies usually between n = 0 (perfectly plastic material) and n = 1
(elastic material). This makes the coefficient (2 +v1+ 3n) vary in the range
3 ~ 4. For a realistic value of n = 0.3, the buckling strain becomes:

I (%)2 (332)

Having determined .., the corresponding buckling stress is calculated from the
power law.

Approximate Solution for the Buckling Strain Consider an elastic plane
stress relation:

E

E
Oy =12 (eyy + VErs)

Using the solution for the pre-buckling state, i.e. 0;; = 0 and oy, = 0 leads:

e N CH (334)
0= T (eyy + VEga)
from which one gets:
E—— (335)

Ocr = Begy = Fegyr

The critical elastic buckling stress is:

2 E h\?
Ocr = kcm <Z> (336)

So, the corresponding critical elastic buckling strain read:

2 R\ 2
Eer = kcm (3) (337)

Equation (337) is more general than a similar expression Eq. (327) given by
the Stowell theory because it applies to all type of boundary conditions. At the
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same time, Stowell’s equation was derived only for the simply supported boundary
conditions. In particular, for k. = 4, Eq. (337) predicts:

Eer = 3.6 (%)2 (338)

which should be compared with the coefficient 3.7 of Eq. (332) in the Stowell’s
theory. For a plastic material or very high hardening exponent, the prediction of
both method are much closer.

4.3.7 Exercise 1: Effect of In-Plane Boundary Conditions, dw = 0
No Constraint in In-Plane Displacement Consider no constraint in in-plane

displacement in y-direction, Ng, = 0.

expansion due to
Poison's effect

+ r > X
No — : E —— No
—» | |—
a L, 1
-l l—
ux
y
The membrane force tensor reads:
o N°O0
a8 = | 0‘ (339)
From the constitutive equation, one gets:
Eh o o) (o]
Ny, = T2 [éyy +v sm} =0=—-Ny, (340)
=€y = —V Eqy

By applying the geometric equation between strain and the displacement and con-
sidering dw = 0, here, one gets the relation between u, and w,:
Ouy,  Oug

-V

oy ox

(341)
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Integrating both sides over the plate length leads:
/ 8uydy— —1// %dx (342)
=—V Uy

Constraint in In-Plane Displacement Consider a plate fully constrained in
the y-direction, u, = 0.

w =VN
: t1914
T > X
N° —= [~ N — = N, =N
a
e EERE
ux
Yy
Consequently, one also gets:
Ouy
°—— Y9 343
Eyy Oy (343)
Under the uniform compression, €;,, reads:
ouy Uy
oy = — = — 344
e (344)

From the constitutive relation, the membrane forces reads:

FEh FEh (T

NII — m |: l‘il) + v 5yy:| — m P — NO (345)
Eh o o Eh Uy o
Nyy = m [Eyy +v me] = m 14 ; = _Nyy

Finally, the membrane force tensor reads:

10
where Bh
Uy
— -2 347
A 1—12 a (347)
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4.3.8 Exercise 2: Raleigh-Ritz Quotient for Simply Supported Square
Plate under Uniaxial Loading

Consider a simply supported square plate subjected to uniform compressive load in
the z-direction.

a
____________ > X
N° — i i —— N°
—_ | |—
a
y
Then, the membrane force tensor reads:
o Ao |10] 10
a8 =N o =A )00' (348)

The plate will deform into a dish, so for the trial function take the following:

¢ =¢(z,y) =sin <7TT:U) sin <7T—y) (349)

a

Now, in order to obtain the load intensity, we first calculate ¢,, and V2¢ :
bz = — cos <H) sin (M> (350)
a a a

T, (T ™Yy
¢,y = —sin <—) cos (—)
a a a

Grzw = — (I)Z sin (%) sin (%) (351)

a
o= (£ () ()
V2= ¢u0 +uyy (352)
=2 (£) sin (5F) sin ()
V26 V2¢ — 4 (2)4 sin? (%”) sin? (%) (353)
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Now, the Raleigh-Ritz quotient is calculated:
o D [y V?¢ V?¢ dS

o s (354)
4D (£)" [ysin® (2) sin? (X) dS
(2)* Jgoos® (F3) sin® (F54) dS
2
=40 (3)
2
N2 =\=4D <%> (355)

This is the classical buckling solution, and it is exact because of the right guess of
the displacement field.

4.4 Buckling of Sections
4.4.1 Transition from Global and Local Buckling

Euler buckling load of a simply-supported column reads:

w2El
(PCT)column = l—2 (356)

where [ is the bending rigidity of the column. Consider a section column which is

composed of several thin plates, then the Euler buckling load can be considered as
a global buckling load of the column.
‘ (P" )column

N i

\

l EI

I~
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On the other hands, local buckling force of a simply-supported plate reads:

_ k2D

N cr b2

(357)

where D = Eh3/ [12 (1 — v?)] and k. = [(mb) /a + a/ (mb)]*>. Thus, the total local
buckling load can be obtained:

(Pc’f')plate = T (358)

Transition from global to local buckling can be calculated by (P)

column —
(PC'I‘)plate:
EI 72D
2
k.m?E  R3
12(1—12) b
I ke A
bh3 — 12(1 —12) (5) (360)

Example 7 Consider a square box column.
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L
A
) b
Then, one obtains:
k.=4
2
I=Zhb’
3
Now, the global buckling load reads:
[ 2m*Ehb?

.2
(PC"")column =m El_2 - T l2

and the local buckling load from four plates can be calculated:

Ak.m?E K3

(Pcr)four plates — m b

Then, applying (Per) cotumn = (Fer) four platess O€ gets:

b2\ 2
— ~ 2.2

Thus, the local and global buckling loads become same when
b? ~ 1.5hl
For example, if b = 40h, then | = 60b.

Transition from the local to global buckling for an open channel section with
lips is shown in the figure below.
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b1=100

\bznsu
12 + b3=10

-~ - -~ = - s e 1AM

o

Buckling coefficients and modes for a hat section

4.4.2 Local Buckling
The remainder of this section deals only with the local buckling. Dividing both
sides of Eq. (357) by the plate thickness b gives the expression of the buckling stress
Ocrt
No kB (hY?
ho 12(1—v2) \ b

Consider two adjacent plates of a section of the prismatic column.

(361)

Ocr =

Plate 2

Compatibility and equilibrium conditions at junction
of adjoining walls of a section

In general, there will be a restraining moment acting at the corner line between
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Plate 1 and Plate 2. The buckling stresses for those two plates are:
kim?E (i’
) =————— | — 362
(0cr)y 12(1—y2)<bl> (362)

(oer) __famB(ha)”
T2 12(1—v2) \ by

Before buckling, stresses in the entire cross-section are the same. So, at the point
of buckling, one gets:

(Ucr)l = (Ucr)g (363)

from which the buckling coefficient ks is relating to ky:

hi by \ 2
ko =k (h—;b—j> (364)

The total buckling load on the angle element is:

Pop = (o)1 haby + (0¢), habs (365)
m2E hi) 2 ha\ 2
S0 k1 (b_1> hiby + ks <E> habo
2 3 2 3
__mE | (h)” " ha by \? (ho)
12(1—12) by habi)  bo

Bk (hi\?
=—|—)] 4
12(1 —1?) <b1>

where A is the sectional area of two plate A = bih1+bohs. From this derivation, the
conclusion is that only one buckling coefficient is needed to calculate the buckling
load of the section consisting of several plates.

Determination of the buckling coefficient is a bit more complicated because of
the existence of the edge bending moment. This can be illustrated in an example
of a box column with a rectangular cross section with the same thickness h.

by

le S ‘
€ >

S|

uniform thickness h

The wider flange will be ready to buckling first while the narrow plate is not ready
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to buckle. When the second plate buckles, the first plate would have buckled long
before. Thus, there is an interaction between left plates, and a compromise must
be established because left plates must buckle at the same time. The buckling
coefficient as a function of the ratio be/b; is plotted in the figure next.

| ey

O
C

f
|‘
1
M
I

Buckling coefficients for box sections

In the limiting case of a square box (by = by = b), k1 = 4 and the edge interactive

moment between adjacent plates is zero.

Some useful graphs and formulas for typical sections are given next.

82



0 - - A A J
0.0 0.2 0.4 0.6 0.8 1.0
Hmby/b,
Curve 1: lipped channel
1.8H
=7 = ———— — 1 43H3.
s TiEe g~ s
Curve 2: box section
2H
K =7 ———— —1.2H3,
] 0ll+ H

Curve 3: plain channel

2 2+48H
K=~—+—
: Bo Bs

Curve 4: I-section made from two channels fixed back-to-back

2 2+ H

K]_ =—+ "—1 )
7o 70

where 8, = /(1 + 15H3),

where 7, = /(1 + 90H*).
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5 Buckling of Cylindrical Shells

5.1 Governing Equation for Buckling of Cylindrical Shells

The starting point of the analysis is the strain-displacement relation for plates:

o 1 1
€af = 5 (Umﬁ tTUgsa ) T35 WaWpg

2
Rap = — W,ap

(366)

Consider a flat plate (z,y) and a segment of a cylinder (x, af), where a is the radius

of a cylinder and 6 is the hoop coordinate.

.-

_____

S

- -

Can the strain-displacement relation for a cylinder be derived from similar re-

lation for a flat plate?

A dxr — dx
e . 210
4 © By 409

Consider component by component. Use the notation:

Uy = Uy — U
U = Uy — U
us — W

Then, one gets:

2

U,p 1 w,e
=g (G Hwe) gua

There is a new term w/a in the expression for the hoop strain.
meaning of this new term becomes clear if we consider axisymmetric deformation
with v = 0 and w independent of . Define the hoof strain as a relative change

84

(367)

(368)

(369)

(370)
(371)

(372)
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in the length of circumference when the original circle has a radius of "a" before
deformation and a new circle has a radius of "a + w" after deformation:

o 2m(a+w)—2ma w
€0 = = -

2ma a (373)

\_/

Mathematically, Eq. (370)-(372) can be derived from its counterparts by trans-

forming the rectangular coordinate system into the curvilinear coordinate system.
x=rsinf (374)
y=rcosf

The step-by-step derivation can be found, for example, in the book by Y.C. Fung,

) urse 1 e NUY ec CS. X 1 urvatu
"First Course in the Continuum Mechanics." The expression for curvature are
transformed in a similar way:

K = W (375)
Ko = W, 00
a?
Wy
Rz =

Using the variational approach explained in details for the plate problem, one can
see that the only new term in the expression for §II = 0 is

/ N 2Zds (376)
S a

Therefore, the new term should be added in the equation for out-of-plane equilib-
rium:

1 2 1
DV*w + ENee — (wa,m +;Nxawma +$Neaw700> =q (377)

where 5 )
v4w = W,zzxx +¥w71x09 +¥w79999 (378)
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The above equations are the nonlinear equilibrium equations for quasi-shallow cylin-
drical shells. The linear equilibrium equations are obtained by omission the non-
linear terms, i.e. terms in the parenthesis. The resulting equations are:

aNgz,0 +Neo,p =0 (379)
aNgg,z +Ngg,9 =0
1
DV*w + ~Nop =4
with
w
Nyw=C (um +u5) (380)
Ngg=C <ﬂ +v u,w)
a
where C is the axial rigidity, C' = Eh/ (1 — 1/2). The pre-buckling solution should

satisfy the system Eq. (379) and (380). These solutions will be denoted by N3 =

_N;B.

5.1.1 Special Case I: Cylinder under Axial Load P, ¢ =0

The membrane forces in the pre-buckling state are:

o _ P |10
o8 = g 00‘ (381)
and the corresponding displacement field reads:
P
= 2
u () 5 O (382)
v Pl
Y= E2rah

It is easy to prove that the above solution satisfies all field equation.
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5.1.2 Special Case II: Cylinder under Lateral Pressure

o 00

5= N o) (353)
where from the constitutive equations Eq. (380):

Nop = Eh% (384)

Substituting Eq. (384) into Eq. (379) leads the following linear forth order inho-
mogeneous ordinary differential equation for w (x):

Fhw

Duw'"" + 5 =q (385)
or in a dimensionless form: ”
=1 (386)

where

s+ ER 3(1—v?)
F= a?D  a2hf

The dimension of 3 is [L~1M°T?], so Bz is dimensionless. There are four boundary

conditions for a simply supported cylinder:

(387)

My, =w=0 at =0 (388)
Myz=w=0 at z =1

where one gets from the moment-curvature relation:

2
M, =—pTY (389)

dx?
Mpg=0
The general solutions of the above boundary value problem is:

q
DAt

w (x) = e P ¢y sin Bz + ¢ cos fz] + €7 [ezsin B + ¢4 cos fi] — (390)

The four integration constants can be found from the boundary conditions. A
typical term of the solution is a rapidly decaying function of x.

eT

¥
Qs A




It can be conducted that the curvature and bending is confined to a narrow
boundary zone of the width x = 7/ (26). The remainder of the shell undergoes a

uniform radial contraction:
wp = ——2 (391)

For the sake of simplicity, this localized bending can be neglected (D — 0).
Then, from Eq. (379), the hoop membrane force is related to the lateral pressure
by Ngg = qa and the pre-buckling solution is:

o 00
Ngg = qa 0 1' (392)

5.1.3 Special Case III: Hydrostatic Pressure

For a cylinder subjected to the hydrostatic pressure, the total axial compressive
force is:

P = qma? (393)

LV

—

7é\;| Wf* V/
tf _7-,4:_,_4%

The pre-buckling solution is:

Nog =qa 01 (394)

1/20‘

which is a classical membrane stress state in a thin cylinder.
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5.1.4 Special Case IV: Torsion of a Cylinder

The pre-buckling stress in a cylinder subjected to the total torque of the magnitude
T is:
o M

a8 = 34 (395)

01
10

Nﬂx

s

5.2 Derivation of the Linearized Buckling Equation

We are now in the position to linearize the nonlinear buckling equation Eq. (377).
It is assumed that the state of membrane forces does not change at the point of
buckling from the pre-buckling value. Thus,

Naog = —NSg (396)

and Eq. (377) becomes:
4 1 o 2 o 1 o
DV*w + ENOH + wa,m +EN:C9'U),$9 +¥N90w,09 =dq (397)

where the hoop membrane force Nyg, the second term in Eq. (397), depends linearly
on three component of the displacement vector (u, v, w):

1
Ngg =C <av,9 +% + l/u,x> (398)
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Therefore, the out-of-plane equilibrium equation is coupled with the in-plane dis-
placement (u, v) through the presence of the term Nyy. Note that in the plate
buckling problem the in-plane and out-of-plane response was uncoupled. It is
possible to eliminate the terms involving in-plane components using the full set of
equilibrium and constitutive equations in the in-plane direction. By doing this, the
order of the governing equation has to be raised by four to give eight:

a2

2

v 2 1

DV3w + CW, gz +V* | N,z +=Nig,ap +— Nigwigo | =0 (399)
The above equation is called the Donnell stability equation in the uncoupled form.
Not that w (z, @) in the above equation represents additional lateral deflection over
and above those produced by the pre-buckling solution. The total deflection is a
sum of the two.

5.3 Buckling under Axial Compression
5.3.1 Formulation for Buckling Stress and Buckling Mode

We are now in a position to develop solutions to the buckling equations, Eq. (399)
for four different loading cases discussed in the previous section. Consider first
Case I of a simply-supported cylindrical shell in which the pre-buckling solution is
given by Eq. (381). In this case, Eq. (399) reduces to:

1_2

v P

The buckling deflection of the shell is assumed in the following form:

w (x,0) = ¢ sin (m;r:z:) sin (nf) (401)

where ¢; is the magnitude, and the integer numbers (m, n) denote the number
of half-waves respectively in the axial and circumferential direction. The above
deformation satisfies both simply-supported boundary conditions at the ends, x = 0
and x = L, and periodicity conditions along the circumference.
Here, the half-length of the buckling wave is defined:
l

A= (402)

It is convenient to introduce a dimensionless buckling number, m:

l

mmx mmwaN\ & oz
e "

d 403
" " (403)
=m=

mmna

l
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Using the dimensionless buckling number, substituting the solution Eq. (401)
into the governing equation Eq. (400) leads:

D, _ P _ s )
= (m2 + n2)4 + m (1- V2) C - - (m2 + n2)2m2] % sin <m§) sin (nf) =0

(404)
By setting the coefficient in the square bracket to zero, the critical buckling mem-
brane force per unit length becomes:

PCT

Ng- = 4
T 9ra ( 05)
D (m? +n?)* ) m?
= 2 2 + (1 -V ) C

(72 + n2)?
Here, by introducing the dimensionless parameter y:
(m2 + n2)2

X=""——73 (406)

Eq. (405) reads:

D 1
Nep = —x+ (1= v?) C’; (407)

The dependence of the buckling force on the parameter x is shown in the figure
below.

(1),




Treating x as a continuous variable, one can find an analytical minimum:

dN, D
i zﬁ—(l—zﬂ)C’—:O (408)

from which the optimum value of the parameter y is:

(1 —v2)Ca?
Xt = || (409)
:% 12(1— 12
a
~3.3—
h

Introducing the expression for the optimum parameter x into Eq. (407) and using
definitions of bending and axial rigidity, one gets:

__B_®
Nk

The buckling stress is obtained by dividing the critical membrane fore by the shell
thickness h:

<NC7‘)mjn = (410)

(Ner) i
= min 411
o - (411)
___ £ 1
3(1-v?)a
h

This is the classical solution for the buckling stress of a cylindrical shell subjected
to axial compression. While the buckling load is unique and does not depend on
(m, n), the buckling mode is not unique as:

_9 2\ 2
(m +n ) a
Xopt = T = 335 (413)
There are infinity of combinations of m and n that give the same expression.

Example 8 Let a/h = 134, then

(m? +’I’L2)2
Xopt = T =33 x 134 ~ 442
-2 2
MmN 9y
m
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n=+/21lm —m?2

5.3.2 Buckling Coefficient and Batdorf Parameter

Let us introduce the dimensionless buckling stress or the buckling coefficient k.:

hi?
2D

Additionally, the Batdorf parameter Z is defined:

ke =0

2
7Z = 1—V2l—
ah

Using Eq. (411), the buckling coefficient becomes:

 E  h_ hP

k. — o
¢ \/3(1—1/2)a . 2D

l2
\/_ 72

12

—7
V/3m2

k. ~0.702 Z

(414)

(415)

(416)

(417)

This relation between k. and Z are shown in the figure below together with two

limiting cases of very short and very long cylindrical shells.

cases are discussed below.
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+ = = \ery short cylinder
General formulation

Buckling coefficient, kc

107 10 10’ 10° 10° 10!
Baddorf parameter, Z

Limiting Cases: Short Cylinders, a > [ Consider a case of the following
conditions:
a>1
a

Then, it is natural to assume that the number of half-waves in the axial direction
is unity:

m=1
Consequently, one gets:

m = ﬂ'% — 00 (419)

Since m is much larger than n, one also gets:

m? +n? ~ m? (420)
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Now, from Eq. (405), the membrane force reads:

P

421
2ma ( )

cr —

The buckling stress reads:
Ny @D
o = =TT
Now, from the definition of the buckling coefficient, Eq. (414), the buckling coeffi-
cient for the very short cylindrical shells reads:

ke=1

This solution indicated in previous figure as the lower bound cut-off value. The
upper bound cut-off values is given by the Euler buckling load.

Limiting Cases: Very Long Cylinders, [ > a The cylindrical shell is becom-
ing the FEuler column. The buckling load of the column is:

2Bl

Pcr: 2

(422)

where I = ma3h for cylinder sections.

—>1
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The buckling stress reads:

Pcr
cr — 42
? 2mah (423)
()
2 l
For this very long cylindrical shells, the buckling coefficient can be written:
2

ke =6(1-2) (%) 424
(1) (& (421)

ke = <%>4 72 (425)

From Eq. (411) and (423), the transition between the local shell buckling and
global thin-walled column buckling occurs when

(O—CT)shell - (UCT)column (426)

which gives:

E h  w? ay\?
—=__EFE(= 42
2 2 1— 12
LU Ve A G DU (428)

a3 2
5.4 Buckling under Lateral Pressure

From the pre-buckling solution, Eq. (392), the governing equation Eq. (399) be-
comes:
8 1— 02 94
DV w + —ch)xa:xx +=V w,pp = 0 (429)
a a
Assuming the double sine buckling deflection function, similar to the case of axial
compression, the governing equation becomes:

% (m? + n2)4 + m? (1-v%)C —gan®(m*+ n2)2} % sin (m%) sin (nf) =0

(430)
By setting the coefficient in the square bracket to zero, the equation for the buckling
pressure becomes:

m4

2)

(431)
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It can be shown that the smallest eigenvalue is obtained when m =1 or m = wa/I.
With this observation, the solution becomes a function of the parameter n, or
dimensionless parameter 7:

nl
= — 432
n=— (432)
Additionally, we define the dimensionless buckling pressure, §:
2a
7= q— 433
=45 (433)
Now, substituting m, 7 and p into Eq. (431) leads:
() L (1= )2
7= n2 + —92 —92\2 2 - (434)
n n? (1 +n?) a a
By introducing the Batdorf parameter Z, one gets:
_9\2
o (1+q2 1 12
7= ( 2 ) —9 —9 2_Z2 (435)
n n2(l1+n2)" ™

For any value of the geometrical parameter Z, there exists a preferred n which
minimize the buckling pressure. Treating n as a continuous variable, the optimum
n can be found analytically from dp/dn = 0. Substituting this back into Eq. (432),
there will be a unique relation between the buckling pressure and the Batdorf pa-
rameter. The solution is shown graphically in the figure below.

Limiting Cases: Very Long Cylinders, [ > a In the limiting case of a long
tube (I > a), one gets:

= mﬂ'% —0 (436)
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e L)

In this case, the last term in Eq. (431) vanishes and the buckling pressure becomes

n2 D
3 (437)

Imagine a long cylinder consisting of a change of ring, each of the height b. The
moment of inertia of the ring along the axial axis reads:

q:

bh3
I=— (438)

From Eq. (437) and (438), the intensity of the line load @ = ¢b can be written
Q=qb

- n?  ER3 b
a3 12 (1 —v?)
_ n?EI
a3 (1—v?)
The above approximation is due to Donnell. The smallest integer value is n = 1
which gives the following buckling mode

(439)
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The Donnell solution should be compared with more exact solution of the ring
buckling problem which take into account a more complex incremental displacement
field with both w (f) and v (f). Here, a distinction should be made between the
centrally directed pressure (as in all preceding analysis) and the field -pressure
loading where pressure is always directed normal to the deformed surface.

In the later case, the ring buckling occurs at:

Q.= (n*—1) % (440)

where the smallest integer n = 2 so that @Q = 3F1/a®. The buckling mode has now
eight nodal points rather than four.

The solution of centrally directed pressure loading case is:

(n2—1)* EI
Oe="m— = )
where again the smallest n = 2. Thus the smallest buckling load intensity is:
EI

It is seen that for a realistic value n=2, the present solution, Eq. (439) gives
the buckling pressure between the two cases of field-pressure loading and centrally
directed loading, 3 < 4 < 4.5.

5.5 Buckling under Hydrostatic Pressure

Special case of the combined loading in which the total axial load P is:

P = rmd’q (443)
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The pre-buckling solution is given by Eq. (394). The solution of the buckling equa-
tion still can be sought through the sinusoidal function, Eq. (401). The optimum
solution can be found by a trial and error method varying parameters m and n. A
graphical representation of the solution is shown in figure below.

5.6 Buckling under Torsion

A twist applied to one end of a cylindrical shell process a twisting force N,g:

o M
Ny = ora (444)

The other two components of the pre-buckling membrane forces vanish N, = Ng, =
0. Moreover, the force is constant.
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Under these conditions, the governing equation reduces to:

1—12

DV8w + 5
a

2
C W,rrre +E 20 V4w,x9 =0 (445)

In view of the presence of odd-ordered derivatives in the above equation, the sep-
arable form of the solution for w (z,0), assumed previously, does not satisfy the
equation.

Under torsional loading, the buckling deformation consists of circumferential
waves that spiral around the cylindrical shell from one end to the other. Such
waves can be represented by a deflection function of the form:

N
w(x,0) = C'sin (mg - n9> (446)
with mra
m = T (447)

where m and n are integers. The alone displacement field satisfy the differential
equation and the periodical condition is the circumferential direction, but does not
satisfy any commonly used boundary at the cylinder ends. Consequently, this
simple examples can be used only for long cylinders.

For such cylinders, introduction of the additional displacement field into the
governing equation, yields:

[
0 —

(1-2*C (448)

(m® +n%)° D m®
2mn  a® 2(m?2+n2)?n

For sufficiently long cylinders, the shell buckles in two circumferential waves, n = 2.

Also, the term m? is small compared with 4. Then, the approximate expression is:
s 4D m? 5
10:%?—{_6_4(1_1})0 (449)

An analytical minimization of the alone experiment with repeat to m gives:
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Upon substitution, the final expression for the buckling force, or better, critical
shear strain causing buckling is:

(451)

Ter =

NS 0272 E <ﬁ>3/2
a

ho (1= w2)3

The above solution was given by Donnell. As noted, the above solution is invalid
for short shells due to the difficulties in satisfying boundary condition. A more
rigorous analytical-numerical solution is shown in the figure below.

=y

As the radius of the shell approaches infinity, the critical stress coefficient for
simply supported and clamped edge approaches respectively the value 5.35 and 8.98
corresponding to plates under the shear loading.

5.7 Influence of Imperfection and Comparison with Experiments

Because of the presence of unavoidable imperfection in real shells, the experimen-
tally measured buckling load are much smaller than the ones found theoretically.

Reduction in the
buckling strength
due to imperfection

Comparison of theoretical and experimental results for four different type of loads:
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Axial compression
Torsion

Lateral pressure

Hydrostatic pressure

are shown in the subsequent two pages. Note that the graphs were presented
in log — log scale. Replotting the results for axially loaded plate yields the graph
shown below.
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Distribution of test data for cylinders subjected to axial compression.

Figure by MIT OCW.

The differences are shown to be very large. Design curves for cylindrical and
other shells are based on the theoretical solution modified by empirical prediction
factors called "know-down factors". For example, the solid curve shown in the
receding page is a "90 percent probability curve.” For a/h = 50, the reduction
factor predicted by this probability curve is 0.24. Thus, the theoretical solution
oer = 0.605 Eh/a should be multiplied by 0.24 for the design stress o = 0.15 Eh/a.

Cylindrical shells loaded in different way are been sensitive to imperfections and
the resulting knock-down factors are smaller.

Most industrial organization establish their own design criteria. They are fre-
quently loose-leaf and are continuously updated on the volume of the experimented
evidence increase. The situation can be converted to the firmly established manual
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of steel constructions for the design of columns and beam. The reason is that col-
umn are not sensitive to imperfection as far as the ultimate strength is concerned.
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