
Structural Mechanics 2.080 Lecture 9 Semester Yr

Lecture 9: Stability of Elastic Structures

In lecture 8 we have formulated the condition of static equilibrium of bodies and struc-

tures by studying a small change (variation) of the total potential energy. The system was

said to be in equilibrium if the first variation of the total potential energy vanishes. The

analysis did not say anything about the stability of equilibrium. The present lecture will

give an answer to that question by looking more carefully what is happening in the vicinity

of the equilibrium state.

To illustrate the concept, consider a rigid body (a ball) siting in an axisymmetric

paraboloid. shown in Fig. (9.1).

Π 

u 

δu 

C > 0 Π 

u 

C = 0 Π 

u 

C < 0 

Figure 9.1: Illustration of stable, neutral and unstable equilibrium.

In the case of a rigid body the total potential energy is just the potential energy

Π = mgh = Cu2 (9.1)

where u is the horizontal displacement of the ball from the resting position. Let’s calculate

the first and second variation of the function Π(u)

δΠ =
∂Π

∂u
δu = 2Cuδu (9.2)

δ2Π = δ(δΠ) = 2Cδuδu (9.3)

At the origin of the coordinate system u = 0, so the first variation of Π is zero no matter

what the sign of the coefficient C is. In the expression for the second variation, the product

δuδu = (δu)2 is always non-negative. Therefore, the sign of the second variation depends

on the sign of the coefficient C. From Fig. 9.1 we infer that C > 0 corresponds to a stable

configuration. The ball displaced by a small amount δu will return to the original position.

By contrast, for C < 0, the ball, when displaced by a tiny amount δu, will roll down and

disappear. We call this an unstable behavior. The case C = 0 corresponds to the neutral

equilibrium.

One can formalize the above consideration to the elastic body (structure), where the

total potential energy is a function of a scalar parameter, such as a displacement amplitude

u. The function Π(u) can be expanded in Taylor series around the reference point uo

Π(u) = Π(uo) +
dΠ

du

∣∣∣∣
u=uo

(u− uo) +
1

2

d2Π

du2

∣∣∣∣
u=uo

(u− uo)2 + · · · (9.4)
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The incremental change of the potential energy ∆Π = Π(u) − Π(uo) upon small variation

of the argument δu = u− uo is

∆Π =
dΠ

du
δu+

1

2

d2u

du2
(δu)2 = δΠ + δ2Π + · · · (9.5)

For the system in equilibrium the first variation must be zero. Therefore, to the second

term expansion, the sign of the increment of Π depends on the sign of the second variation

of the potential energy. We can now distinguish three cases

δ2Π


> 0, Positive (stable equilibrium)

= 0, Zero (neutral equilibrium)

< 0, Negative (unstable equilibrium)

9.1 Trefftz Condition for Stability

In 1933 the German scientist Erich Trefftz proposed the energy criterion for the determina-

tion of the stability of elastic structures. We shall explain this criterion on a simple example

of a one-degree-of-freedom structure. Consider a rigid column free at one end and hinged

at the other. There is a torsional spring mounted at the hinge. Upon rotation by an angle

θ, a bending moment develops at the hinge, resisting the motion

M = Kθ (9.6)

where K is the constant of the rotational spring. The column is initially in the vertical

position and is loaded by a compressive load P , Fig. (9.2). In the deformed configuration,

the force P exerts a work on the displacement u

u = l(1− cos θ) ∼= l
θ2

2
(9.7)

The total potential energy of the system is

Π =
1

2
Mθ − Pu =

1

2
Kθ2 − 1

2
Plθ2 (9.8)

Upon load application the column is of course rigid and remains straight up to the

critical point P = Pc. The path θ = 0 is called the primary equilibrium path. If the column

were elastic rather than rigid, there would be only axial compression along that path. This

stage is often referred to as a pre-buckling configuration. At the critical load Pc the structure

has two choices. It can continue resisting the force P > Pc and remain straight. Or it can

bifurcate to the neighboring configuration and continue to rotate at a constant force. The

bifurcation point is the buckling point. The structure is said to buckle from the purely

compressive stage to the stage of a combined compression and bending.

The above analysis have shown that consideration of the equilibrium with nonlinear

geometrical terms, Eq. (9.7) predicts two distinct equilibrium paths and a bifurcation
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(buckling) point. Let’s now explore a bit further the notion of stability and calculate the

second variation of the total potential energy

δ2Π = (K − Pl)δθδθ (9.9)

The plot of the normalized second variation δ2Π/δθδθ is shown in Fig. (9.2).

Figure 9.2: Stable and unstable range in column buckling.

It is seen that in the range 0 < P < Pc, the second variation of the total potential

energy is positive. In the range P > Pc, that function is negative. A transition from the

stable to unstable behavior occurs at δ2Π = 0. Therefore, vanishing of the second variation

of the total potential energy identifies the point of structural instability or buckling.

Physically, the test for stability looks like this. We bring the compressive force to the

value P ∗, still below the critical load. We then apply a small rotation ±δθ in either direction

of the buckling plane. The product δθδθ is always non-negative.

Figure 9.3: A discrete Euler column in the undeformed and deformed configuration.

For equilibrium the first variation of the total potential energy should banish, δΠ = 0,

which gives

(K − Pl)θδθ = 0 (9.10)
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There are two solutions of the above equation, which corresponds to two distinct equilibrium

paths:

• θ = 0 – primary equilibrium path

• P = Pc =
K

l
– secondary equilibrium path

θ 
0 

P 

Figure 9.4: Two equilibrium paths intersects at the bifurcation point.

And so is the second variation of the total potential energy (length AB in Fig. (9.2)).

When the lateral load needed to displace the column by δθ is released, the spring system

will return to the undeformed, straight position.

We repeat the same test under the compressive force p∗∗ > Pc. The application of

the infinitesimal rotation δθ will make the function δ2/δθδθ negative. This is a range of

unstable behavior. Upon releasing of the transverse force, the column will not returned to

the vertical position, but it will stay in the deformed configuration. It should be pointed up

that the foregoing analysis pertains to the problem of stability of the primary equilibrium

path. The secondary equilibrium path is stable, as will be shown below.

To expression for total potential, it can be constructed with the exact equation for the

displacement u rather than the first two-term expansion, Eq. (9.7)

Π =
1

2
Kθ2 − lP (1− cos θ) (9.11)

The secondary equilibrium path obtained from δΠ = 0 is

P

Pc
=

θ

sin θ
(9.12)

The plot of the above function is shown is Fig. (9.5).

For small values of the column rotation, the force P is almost constant, as predicted by

the two-term expansion of the cosine function. For larger rotations, the column resistance

increases with the angle θ. Such a behavior is inherently stable. The force is monotonically

increasing and reach infinity at θ → π.
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Figure 9.5: Plot of the secondary equilibrium path.

9.2 Stability of Elastic Column Using the Energy Method

The Trefftz condition for stability can now be extended to the elastic column subjected to

combined bending and compression. The elastic strain energy stored in the column is a

sum of the bending and axial force contribution

U =

∫ l

0

(
1

2
Mκ+

1

2
Nεo

)
dx (9.13)

It is assumed that the column is fixed at one end against axial motion and allow to move

in the direction of the axial force.

w 

u 

N̄

Figure 9.6: Initial and deformed elastic column.

To maintain generality, no static or kinematic boundary conditions are introduced in

the present derivation. The work of external forces is

W = N̄uo (9.14)

The first variation of the total potential energy is

δΠ = δ(U −W ) =
1

2

∫ l

0
(δMκ+Mδκ+ δNε+Nδε)dx−Nδuo (9.15)
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For linear elastic material

M = EIκ, δM = EIδκ (9.16a)

N = EAε, δN = EAδε (9.16b)

By eliminating the bending and axial rigidity between the above equation, the following

identities hold

Mδκ = δMκ (9.17a)

Nδε = δNε (9.17b)

Therefore, the expression (9.15) is reduced to

δΠ =

∫ l

0
(Mδκ+Nδε) dx− N̄δuo (9.18)

Now, recall the strain-displacement relations in the theory of moderately large deflection of

beams

κ = −w′′, δκ = −(δw)′′ (9.19a)

ε = u′ +
1

2
(w′)2, δε = (δu)′ − w′δw′ (9.19b)

Substituting the increments δκ and δε into Eq. (9.18) yields

δΠ = −
∫ l

0
Mδw′′ dx+N

∫ l

0
w′δw′ dx+N

∫ l

0
δu′ dx−Nδuo (9.20)

In the above expression the axial load is unknown but constant over the length of the

column. Therefore the load N could be brought outside the integrals. Consider now the

last two terms in Eq. (9.20)

N

∫ l

0
δu′ dx−Nδuo = Nδu

∣∣∣x=l

x=0
−Nδu = Nδuo −Nδuo = 0 (9.21)

With the above simplification we calculate now the second variation of the total potential

energy

δ2Π = δ(δΠ) = −
∫ l

0
δMδw′′ dx+N

∫ l

0
δw′δw′ dx (9.22)

According to the Trefftz stability criterion δ2Π = 0,

−
∫ l

0
EIδw′′δw′′ dx+N

∫ l

0
δw′δw′ dx = 0 (9.23)

The buckling load N = Nc is then

N = EI

−
∫ l

0
δw′′δw′′ dx∫ l

0
δw′δw′ dx

(9.24)
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Let’s express the out-of-plane deflection of the column as a product of the amplitude

A and the normalized shape function φ(x). The shape function should satisfy kinematic

boundary condition of a problem

w(x) = Aφ(x) (9.25)

We can calculate now the first and second derivatives of the function w(x) and their varia-

tions

w′ = Aφ′, δw′ = δAφ′ (9.26a)

w′′ = Aφ′′, δw′′ = δAφ′′ (9.26b)

Substituting the above expression into Eq. (9.24), we get

Nc = EI

∫ l

0
δAφ′′δAφ′′ dx∫ l

0
δAφ′δAφ′ dx

= EI

∫ l

0
φ′′φ′′ dx∫ l

0
φ′φ′ dx

(9.27)

where Nc = −N is he compressive buckling load.

The above equation for the critical buckling load of a column is called the Raleigh-Ritz

quotient. The Trefftz criterion does not provide the shape function but for a given shape

calculates the approximate value of the buckling load. This is always an upper bound.

Should the shape function coincide with the exact buckling shape, the Raleigh-Ritz quotient

will give the absolute minimum value.

As an illustration, consider the pin-pin supported column and assume the following

buckling shape

φ(x) = x(l − x) (9.28)

which satisfies identically kinematic boundary conditions φ(x = 0) = φ(x = l) = 0. The

first and second derivatives of the shape function are

φ′(x) = 2x− l (9.29a)

φ′′(x) = 2 (9.29b)

After straightforward integration, the calculated buckling load is

Nc =
12EI

l2
(9.30)

Can the accuracy of the above solution be improved? Let’s try and assume as a shape

function the solution for the pin-pin beam under the uniform line load

φ(x) = x4 − 2lx3 + l3x (9.31)
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The above function satisfies the simple support boundary condition at both ends. The

slope and the curvature of the deflected shape are

φ′(x) = 4x3 − 6lx2 + l3 (9.32a)

φ′′(x) = 12x2 − 12lx (9.32b)

Because the curvature at both ends vanish, so does the bending moment. Also the slope

at mid-span is zero. This means that the static (zero bending moments) boundary con-

ditions are also satisfied. The previously considered shape function, Eq. (9.28) led to the

constraint curvature, meaning that the static boundary conditions were violated. After

straightforward calculation, the numerical coefficient become
1680

170
= 9.88. There was over

20% improvements in the accuracy of the solution

Nc = 9.88
EI

l2
(9.33)

Can the solution be further improved (lowered)? yes, but not by much. Assume a

sinusoidal shape of the buckling shape

φ = sin
πx

l
(9.34a)

φ′ =
π

l
cos

πx

l
(9.34b)

φ′′ = −
(π
l

)2
sin

πx

l
(9.34c)

The expression for the critical buckling load becomes

Nc =
EI(

π

l
)4

(
π

l
)2

∫ l

0
sin2 πx

l
dx∫ l

0
cos2

πx

l
dx

(9.35)

Both integrals are identical and the solution becomes

Nc =
π2EI

l2
(9.36)

Because π2 = 9.86, the sinusoidal solution is slightly lower than the previous polynomial

solution. This is the lowest possible coefficient meaning that it must be an exact solution to

the buckling problem. To prove it, it is sufficient to check if the local equilibrium equation

is satisfied

EIwIV +Nw′′ = 0 (9.37)

Indeed, substituting Eqs. (9.34) and (9.36) into the equilibrium equation brings the left

hand side of this equation identically to zero.
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9.3 Effect of Structural Imperfections

Consider the same discrete strutter as in Section 9.1. This time the rigid rod is not straight

but is rotated by the angle θo before the vertical load is applied. Upon load application

the column is subjected to additional rotation θ, measured from the theoretical vertical

direction, Fig. (9.7).

K 

P 

l 
θ 

θo Mint 

θ 
θo 0 

K 

Figure 9.7: The initial inclination angle θo is a measure of structural imperfection.

The problem will be solved by means of local equilibrium. The external bending moment

at the base is

Mext = Pl sin θ, for θ > θo (9.38)

where l sin θ is the arm of the force P . In the case of small angle approximation Mext = Plθ.

The internal resisting bending moment is

Mint = K(θ − θo) (9.39)

Equating the external and internal bending moments

Plθ = K(θ − θo) (9.40)

For a geometrically perfect column θo = 0 and from Eq. (9.40)

P = Pc =
K

l
(9.41)

Equation (9.40) can be re-written in terms of the normalized compressive force P/Pc

P

Pc
θ = θ − θo (9.42)

Solving this equation for θ yields

θ = θo
1

1− P

Pc

(9.43)
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The plot of the above function is shown in Fig. (9.8). The term 1/(1 − P

Pc
) is called the

magnification factor. It predicts how much the initial imperfections are magnified for a

given magnitude of load. When structural imperfections are present, there are no primary

and secondary equilibrium paths. There is only one smooth load-deflection curve called the

equilibrium path.

P

Pc

20 40 60 80 100

0.90

0.92

0.94

0.96

0.98

1.00

θ 
θo 0 

1 

θo 

Figure 9.8: A family of equilibrium paths for different values of imperfections.

It is interesting to note that with smaller and smaller initial imperfections, the equilib-

rium paths are approaching the bifurcation point but never reach it. This type of behavior

is common to all imperfect structures.

As another example of an imperfect structure consider a pin-pin elastic column. The

following notation is introduced:

• w̄(x) – shape of initial imperfection

• w̄o – amplitude of initial imperfection

• w(x) – actual buckled shape measured from the vertical (perfect) position

• wo – central amplitude of the actual deflection

The internal bending moment is

Mint = EI∆κ = −EI(w′′ − w̄′′) (9.44)

where ∆κ is the change of curvature from the initial curved (imperfect) column. For a

simply supported column, the end (reaction) moments are zero so the external bending

moment is

Mext = Pw (9.45)
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w̄(x)

w̄o

wo

w(x)

P 

M 

w(x)

Figure 9.9: A continuous imperfect column and the free body diagram.

Equating the internal and external bending moments one gets

EIw′′ + Pw = EIw̄(x) (9.46)

This is a second order, linear inhomogeneous differential equation, where the right hand side

is a known shape of initial imperfection. The solution to this equation exists in terms of

quadratures, but the integrals are difficult to evaluate for complex shapes of imperfections.

Let’s consider the simplest case of a sinusoidal shape of imperfections. It can be shown

that the solution w(x) is also of the sinusoidal shape

w(x) = wo sinλx (9.47a)

w̄(x) = w̄o sinλx (9.47b)

The kinematic boundary conditions are

w(0) = w(l) = 0

which implies that

sinλl = 0 → λl = nπ (9.48)

Substituting Eq. (9.47) into the governing equation (9.46)

−EIλ2(wo − w̄o) sinλx− Pwo sinλx = 0 (9.49)

which is satisfied if

Pwo = EI(wo − w̄o)λ
2 (9.50)

For a perfect column w̄o = 0, and Eq. (9.50) yields

(Pc − EIλ2)wo = 0

or Pc = EIλ2 =
n2π2EI

l2
(9.51)
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For an imperfect column

Pwo = Pc(wo − w̄o) (9.52)

or solving for wo

wo = w̄o
1

1− P

Pc

(9.53)

The form of the magnification factor is identical to the one derived for the district

column. The only difference is that a continuous column has infinity buckling mode where

n = 1 corresponds to the lowest buckling load. The buckling load corresponding to the

second buckling mode is four times larger and so on.

9.4 Stability in Tension

For some materials instability in tension manifest itself by a development of a local neck,

Fig. (9.10).

Solid bar Thin-walled tube 

Figure 9.10: Necking in a solid section bar and thin-walled tube under tension.

Consider a round bar of the initial cross-sectional area Ao subjected to a tensile force

P . The bar becomes longer and because the Poisson effect its cross-section shrinks to a

current value A. The present analysis is valid for materials that are incompressible, that is

do not change volume but only shape. Certain polymers, rubber and metals (in the plastic

range) are incompressible.

The volume of an infinitesimal length l is

V = lA (9.54)
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The increment of volume for the incompressible material must be equal to zero

δV = δ(lA) = δlA+ lδA = 0 (9.55)

Take the logarithmic definition of the axial strain

ε = ln
l

lo
; δε =

δl

l
(9.56)

From the above two equations

δε =
δl

l
= −δA

A
(9.57)

Integrating both sides

ε = − lnA+ C

At A = Ao, ε = 0 so C = lnAo.

Therefore, the expression for the axial strain becomes

ε = ln
Ao

A
= ln

l

lo
(9.58)

We conclude that axial strain can be determined by either measuring the change in length

or the change in cross-sectional area. The true (Cauchy) stress is defined as the load divided

by the current cross-section A

σ =
P

A
(9.59)

Let’s construct the total potential energy and its first variation

δΠ =

∫
V
σδεdv − Pδu (9.60)

Before instability occurs, the deformation and stress (uniaxial tension) is uniform across

the section of the bar of the length l

u = lε = l ln
Ao

A
(9.61a)

δu = −l δA
A

(9.61b)

Thus, from Eqs. (9.60) and (9.61)

δΠ =

∫
V
σδεdv + Pl

δA

A
(9.62)

The second variation of the total potential energy is

δ2Π =

∫
V
δσδεdv − PlδAδA

A2
(9.63)

Applying the Trefftz stability condition δ2Π = 0 one gets

lAδσδε = Plδεδε (9.64)
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or

δσ =
P

A
δε = σδε (9.65)

and finally
δσ

δε
= σ (9.66)

The incompressible bar is losing stability in tension when the local tangent to the stress-

strain curve becomes equal to the value of stress at that point. A graphical interpretation

is shown in Fig. (9.11).

ε 

σ 

σ 
d�

d✏

Figure 9.11: The construction of Considere’ who was the first to derive Eq. (9.66).

At what strain an instability develops for an elastic material? In uni-axial stress

σ = Eε (9.67a)

dσ

dε
= E (9.67b)

Equation (9.66) is satisfied if ε = 1. For metals such strain is not attainable in the elastic

range because yield will be reached at the strain εy =
σy
E
∼= 10−3. However, for rubber and

similar polymeric materials the Young’s modulus is four orders of magnitude smaller, so

necking is of common occurrence. The derivation of the instability condition (9.66) was

done without any assumption on the stress-strain relation of the material. Therefore this

condition is valid for an elastic as well as plastic material. This brings us to the next topic

which is plastic buckling of columns.

9.5 Plastic Buckling of Columns

Let’s consider the pin-pin column for which the critical buckling load is

Pc =
π2EI

l2
(9.68)

The corresponding critical buckling stress σc is

σc =
Pc

A
=
π2E

l2
I

A
(9.69)
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where A is the cross-sectional area. Note that the stress is calculated over the pre-buckling,

primary equilibrium path, for which there is no bending. Denoting by ρ the radius of

gyration, Aρ2 ≡ I, Eq. (9.69) can be re-written in terms of the slenderness ratio β = l/ρ

σc = π2E
1

β2
(9.70)

The buckling stress is small for long, slender column and is rapidly increasing for short

columns. At some critical column length, the yield stress of the material σy will be reached,

Fig. (9.12).

0 
β 

C A βC 

D 

B 

σC 

σy 

Figure 9.12: A hyperbolic dependence of the buckling stress on the slenderness ratio.

The critical slenderness ratio at which the buckling stress reaches the yield stress of the

material is obtained from Eq. (9.70) by setting σc = σy

βc =
lc
ρ

= π

√
E

σy
(9.71)

To give you the feel of the critical slenderness, consider a mild steel column with E = 210

GPa, σy = 250 MPa and square cross-section A = h2, for which the radius of gyration is

ρ2 = h2/12 (
l

h

)
c

= π

√
E

σy
· 1

2
√

3
≈ 30 (9.72)

Columns more slender than the critical will buckle elastically before yielding (path AB).

Shorter column or stocky column will yield before buckling. What will happen with such

columns? They will deform plastically in axial compression and eventually buckle in the

plastic range.

Gerrard (1948) extended the predictive capability of Eq. (9.70) into the plastic range

by replacing the elastic modulus by the tangent modulus Et =
dσ

dε

(σc)plastic = π2Et
1

β2
, for β < βc (9.73)
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For example, for a plastic material obeying the power hardening rule,

σ = B · εn (9.74a)

dσ

dε
= nBεn−1 (9.74b)

Substituting Eq. (9.74) into Eq. (9.73), the critical buckling strain εc is

εc =
π2n

β2
(9.75)

Using the hardening rule, the buckling stress is

σc = B

[
π2n

β2

]n
(9.76)

In the above equation B is the amplitude of the hardening law and n is the hardening

exponent. For most structural steels n ≈ 0.1-0.2.

0 βC 
β 

σ 

σy 

σult 

Squash load Plastic buckling, Eq. (9.75) 

Elastic buckling, Eq. (9.69) 

Figure 9.13: Range of elastic and plastic buckling.

Very short columns are beyond the scope of the elementary theory of thin and slender

beams. They will never buckle but flatten as a pancake.
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ADVANCED TOPIC

9.6 Mode Transition

Moment Equilibrium Equation

For a pin-pin supported column, the shape of the imperfection w̄(x) and the deformation

w(x) satisfy the moment equilibrium equation

EIw′′ + Pw = EIw̄′′ (9.77)

The solutions should satisfy the boundary conditions

w(0) = 0 (9.78a)

w′′(0) = 0 (9.78b)

w(l) = 0 (9.78c)

w′′(l) = 0 (9.78d)

Of course, the solutions should also satisfy the continuous conditions: w(x) and w′(x) are

continuous along the entire length of the column, namely, no step or kink occurs in the

solutions.

We can expand the imperfection w̄(x) in Fourier series as

w̄(x) =
∞∑
n=1

An sin
nπx

l
(9.79)

The coefficients An can be determined by Fourier transformation of w̄:

An =
2

l

∫ l

0
w̄(x) sin

nπx

l
dx (9.80)

The deformation w(x) under a load P can be written as a summation of a complete set of

Fourier series

w(x) =
∞∑
n=1

Bn sin
nπx

l
(9.81)

where Bn can be determined by Eq. (9.77).

Eq. (9.77) now becomes

−
∞∑
n=1

Bn

(nπ
l

)2
sin

nπx

l
+

P

EI

∞∑
n=1

Bn sin
nπx

l
= −

∞∑
n=1

An

(nπ
l

)2
sin

nπx

l
(9.82)

To make the equation hold, the coefficients should satisfy

−Bn
n2π2

l2
+

P

EI
Bn = −An

n2π2

l2
(9.83)
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Solve for Bn, we get

Bn = An
1

1− P̄ /n2
(9.84)

here, we defined P̄ = P/Pc and Pc =
π2EI

l2
. So, the deformation w(x) is

w(x) =
∞∑
n=1

An
1

1− P̄ /n2
sin

nπx

l
(9.85)

The solution tells us what is the shape of the deformation, but it does not tell us any

thing about the stability of the equilibrium shape. If we want to study the stability, we

have to use potential energy method.

Potential Energy Method

Under a load P , the total potential energy of the column system is (due to Eq. (10.26) in

Lecture 10):

Π =
EI

2

∫ l

0
(w′′ − w̄′′)2 dx− P

2

∫ l

0
(w′2 − w̄′2) dx (9.86)

Substitute Eqs. (9.79) and (9.81) into it, we have

Π =
EI

2

∫ l

0
(w′′ − w̄′′)2 dx− P

2

∫ l

0
(w′2 − w̄′2) dx

=
EI

2

∫ l

0

[
−
∞∑
n=1

Bn

(nπ
l

)2
sin

nπx

l
+
∞∑
n=1

An

(nπ
l

)2
sin

nπx

l

]2
dx

− P

2

∫ l

0


[ ∞∑
n=1

Bn

(nπ
l

)
cos

nπx

l

]2
−

[ ∞∑
n=1

An

(nπ
l

)
cos

nπx

l

]2 dx

=
π4EI

4l3

∞∑
n=1

(Bn −An)2n4 − π2P

4l

∞∑
n=1

B2
nn

2 +
π2P

4l

∞∑
n=1

A2
nn

2

=
π2Pc

4l

{ ∞∑
n=1

[
(Bn −An)2n4 − P̄ (b2n −A2

n)n2
]}

(9.87)

The orthogonality of Fourier series is used to simplify the integration.

In order to obtain the equilibrium solution, we need the first derivative of potential

energy
∂Π

∂Bn
= 0 → Bn = An

1

1− P̄ /n2
(9.88)

which is exactly the same as the solution given by solving the equilibrium equation.

To see the stability of the solution, we need the second derivative of potential energy

∂2Π

∂B2
n

> 0 → P̄ < n2 (9.89)

We can see the following points directly from Eqs. (9.88) and (9.89):
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• The critical buckling load for the nth mode is Pc =
n2π2EI

l2
.

• The modes that satisfy n2 > P̄ are in stable equilibrium.

• For the modes that satisfy n2 < P̄ , we can still solve for a value of Bn, but those

modes are unstable and will snap into either plus or minus infinity.

Examples 1

The imperfection w̄(x) consists of only the first two modes, namely

w̄(x) = A1 sin
πx

l
+ sin

2πx

l
(9.90)

If A1 = 0, the zero point is at the center of the column. If A1 6= 0, the zero point is displaced

by a distance u. u is given by

u =
sin−1 A1

2

π
l , 0 ≤ A1 ≤ 2 (9.91)

The deformation amplitudes vs. load curves are plotted in Fig. (9.14) for the case

A1 = 0.5, Fig. (9.15) for A1 = 1, and Fig. (9.16) for A1 = 1.5.

1 2 3 4

-6

-4

-2

2

4

6

8

Figure 9.14: The deformation amplitudes B1, B2 vs. load P̄ curves, for the case A1 = 0.5.
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1 2 3 4

-5

5

10

Figure 9.15: The deformation amplitudes B1, B2 vs. load P̄ curves, for the case A1 = 1.

1 2 3 4

-5

5

10

Figure 9.16: The deformation amplitudes B1, B2 vs. load P̄ curves, for the case A1 = 1.5.

Examples 2

The imperfection is in such a shape that the zero point is displaced while both sections are

self-symmetric. Such a shape can be described as

w̄(x) =


sin

πx

ηl
0 < x < ηl

−1− η
η

sin
π(x− ηl)
(1− η)l

ηl < x < l
(9.92)

where 0.5 ≤ η ≤ 1. When η = 0.7, w̄(x) can be expanded in Fourier series as:

w̄(x) = 0.634 sin
πx

l
+ 0.563 sin

2πx

l
− 0.174 sin

3πx

l
+ 0.071 sin

4πx

l
+ · · · (9.93)

As expected, in this case, the first two modes dominate, but there are still higher modes in

the expansion.
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We plot the mode amplitudes vs. load in Fig. (9.17). If the load P̄ > 4, for example,

P̄ = 7.5, the amplitude of mode III becomes largest. So, the solved deformation shape looks

more like mode III, although the initial imperfection seems having nothing to do with mode

III. Nevertheless, this shape is very unstable; since P̄ > 22, both mode I and mode II are in

unstable equilibrium. Under such a load, mode I and mode II will amplify exponentially.

Figure 9.17: The deformation amplitudes of the first three modes vs. load P̄ curves, for the

imperfection shape described by Eqn. 9.92.

END OF ADVANCED TOPIC
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