
Structural Mechanics 2.080 Lecture 8 Semester Yr

Lecture 8: Energy Methods in Elasticity

The energy methods provide a powerful tool for deriving exact and approximate solutions

to many structural problems.

8.1 The Concept of Potential Energy

From high school physics you must recall two equations

E =
1

2
Mv2 kinematic energy (8.1a)

W = mgH potential energy (8.1b)

where H is the hight of a mass m from a certain reference level Ho, and g stands for the

earth acceleration. The reference level could be the center of the earth, the sea level or any

surface from which H is measured.
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Figure 8.1: Gravitational potential energy.

We seldom measure H from the center of earth. Therefore what we can easily measure

is the change of the potential energy

∆W = (mg)(H −Ho) (8.2)

The energy is always positive. It can e zero but it cannot be negative. The gravity force

F = mg is directed towards the center of earth. Therefore there is a need for the negative

sign in Eq. (8.2)). In the coordinate system of Fig. (8.1), the gravity force is negative

(opposite to the sense of coordinate x). The force F is acting in the sense of x but the

difference H −Ho is negative.

Extending the concept of the potential energy to the beam, the force is F = q dx and

the w = H −Ho is the beam deflection.

W ≡ +

∫ l

0
qw dx (8.3)

An analogous expression for plates is

W ≡ +

∫
S
pw ds (8.4)
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Figure 8.2: Potential energy of a beam element and the entire beam.

In the above definition W is negative.

The concept of the energy stored elastically U has been introduced earlier. For a 3-D

body

U =

∫
V

1

2
σijεij dv (8.5)

and for a beam

U =

∫ l

0

1

2
MK dx+

∫ l

0

1

2
Nε◦ dx (8.6)

For plates, the bending and membrane energies are given by Eqs. (4.73), (4.74) and (4.86),

(4.87).

The total potential energy Π is a new concept, and it is defined as the sum of the drain

energy and potential energy

Π = U + (−W ) = U −W (8.7)

Consider for a while that the material is rigid, for which U ≡ 0. Imagine a rigid ball

being displaced by an infinitesimal amount on a flat (θ = 0) and inclined (θ 6= 0) surface,

Fig. (8.3).
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Figure 8.3: Test if an infinitesimal displacement δu causes the potential energy to change.

We have H = u sin θ and δH = δu sin θ. The total potential energy and its change is

Π = −W = −Fu sin θ (8.8a)

δΠ = −δW = −(F sin θ)δu (8.8b)

On the flat surface, θ = 0 and δΠ = 0, and the ball is in static (neutral) equilibrium. If

θ > 0, δΠ 6= 0 and the ball is not in static equilibrium. Note that if the d’Alambert inertia
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force in the direction of motion is added, the ball will still be in dynamic equilibrium. In

this lecture, only static equilibrium is considered. We can now extend the above test for

equilibrium and introduce the following principle:

The system is said to be in equilibrium, if an infinitesimal change of the argument a of

the total potential energy Π = Π(a) does not change the total potential energy

δΠ(a) =
∂Π

∂a
δa = 0 (8.9)

Because δa 6= 0 (δa = 0 is a trivial case in which no test for equilibrium is performed), the

necessary and sufficient condition for stability is

∂Π

∂a
= 0 (8.10)

In case when the functional Π is a function of many (say N) variables Π = Π(ai), the

increment

δΠ =
∂Π

∂ai
δai, i = 1, ..., N (8.11)

The system is in equilibrium if the derivative of Π with respect to each variable at a time

vanishes
∂Π(ai)

∂ai
= 0, i = 1, ..., N (8.12)

The meaning of the argument(s) ai, or independent variables will be explained next.

8.2 Equivalence of the Minimum Potential Energy and Prin-

ciple of Virtual Work

The concept of virtual displacement δui is the backbone of the energy methods in mechanics.

The virtual displacement is a small hypothetical displacement which satisfy the kinematic

boundary condition. The virtual strains δεij are obtained from the virtual displacement by

δεij =
1

2
(δui,j + δuj,i) (8.13)

The increment of stress δσij corresponding to the increment of strain is obtained from the

elasticity law

σij = Cijklεkl (8.14a)

δσij = Cijklδεkl (8.14b)

Therefore, by eliminating Cijkl
σijδεij = εijδσij (8.15)

The total strain energy of the elastic system Π is the sum of the elastic strain energy stored

and the work of external forces

Π =

∫
V

1

2
σijεij dv −

∫
S
Tiui ds (8.16)
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Figure 8.4: Equivalence of the strain energy and complementary strain energy.

In the above equation the surface traction are given and considered to be constant.

The stresses σij are not considered to be constant because they are related to the variable

strains. For equilibrium the potential energy must be stationary, δΠ = 0 or

δ

∫
V

1

2
σijεij dv − δ

∫
S
Tiui ds

=
1

2

∫
V
δ(σijεij) dv −

∫
S
Tiδui ds

=
1

2

∫
V

(δσijεij + σijδεij) dv −
∫
S
Tiδui ds = 0

(8.17)

The two terms in the integrand of the volume integral are equal in view of Eq. (8.15).

Therefore, Eq. (8.17) can be written in the equivalent form∫
V
σijδεij dv =

∫
S
Tiδui ds (8.18)

which is precisely the principle of virtual work. The above proof goes also in the opposite

direction. Assuming the principle of virtual work one can show that the stationarity of the

total potential energy holds.

8.3 Two Formulations for Beams

In the bending theory of beams, the total potential energy is

Π =

∫ l

0

1

2
Mκ dx−

∫ l

0
q(x)w dx (8.19)

Using the moment curvature relation M = EIκ, either M or κ can be eliminated from Eq.

(8.18), leading to

U =

∫ l

0

1

2
Mκ dx =


∫ l

0

EI

2
κ2 dx displacement formulation∫ l

0

1

2EI
M2 dx stress formulation

(8.20)
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In statically determined problems the bending moments can be expressed in terms of

the prescribed line load or point load. In the latter case the M = M(P ) and the total

potential energy takes the form

Π = U(P )− Pw (8.21)

The above representation will lead to the Castigliano theorem which will be covered later

in this lecture.

The more general displacement formulation will be covered next. The curvature is

proportional to the second derivative of the displacement. The expression of the total

potential energy becomes

Π =

∫ l

0

EI

2
(w′′)2 dx−

∫ l

0
q(x)w dx (8.22)

The problem is reduced to express the displacement field in terms of a finite number of free

parameters w(x, ai) and then use the stationary condition, Eq. (8.12) to determine these

unknown parameters. This could be done in three different ways:

(i) Polinomial representation or Taylor series expansion

(ii) Fourier series expansion

(iii) FInite element or finite difference method

Each of the above procedure will be explained separately.

8.4 Fourier Series Expansion and the Ritz Method

Consider a symetrically loaded simply supported plate by the point force at the center. The

total potential energy of the system is

Π =

∫ l

0

EI

2
(w′′)2 dx− Pw (8.23)

The objective is to find the amplitude and shape of the deflection function that is in equi-

librium with the prescribed load P . In other words we will be looking the deflection and

shape that will make the total potential energy stationary.

Assume the solution as a Fourier expansion function

w(x) =
N∑
n=1

anφn(x) (8.24)

where φn(x) is a complete system of coordinate function satisfying kinematic boundary

conditions. In the rectangular coordinate system this system consists of hormonic functions,
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in the polar coordinate system these are Bessel function, and in the spherical coordinate

system this role is taken by the Legender functions. In our case

φn(x) = sin
nπx

l
(8.25)

The kinematic boundary conditions φn(x = 0) = φn(x = l) are identically satisfied. Further-

more, because of the symmetry of the problem, only the symmetric function will contribute

to the solution.

n = 2 

n = 4 

n = 1 

n = 3 

Figure 8.5: Asymmetric modes do not satisfy boundary condition w′(x =
l

2
) = 0 at the

center of the beam.

The solution is then represented as

w(x) = a1 sin
πx

l
+ a3 sin

3πx

l
+ · · · (8.26)

Consider first one-term approximation

w(x) = a1 sin
πx

l
(8.27a)

w′(x) = a1

(π
l

)
cos

πx

l
(8.27b)

w′′(x) = −a1
(π
l

)2
sin

πx

l
(8.27c)

The expression for the total potential energy is

Π =
1

2
EI
(π
l

)4
a21

∫ l

0
sin

πx

l
dx− Pa1 (8.28)

where the integral is simply l/2. Eq. (8.26) reduces then to

Π =
1

4
EI

π4

l3
a21 − Pa1 (8.29)

For equilibrium
dΠ

da1
= 0, which yields

1

2
EI

π4

l3
a1 − P = 0 (8.30)
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The load-displacement relation is finally given by

(a1)opt =
Pl3

π4

2 EI
=

Pl3

48.7EI
(8.31)

The numerical coefficient in the exact solution of this problem is 48. The error of the

approximate solution is 1.4%. Such a good accuracy of just one-term approximation can be

explained by making the Taylor series expansion of the sign function

sin
πx

l
=
πx

l
− 1

6

(πx
l

)3
+ · · · (8.32)

The two term expansion has a linear and cubic terms in x, the same as the exact solution.

Let’s examine next the stationary property of the functional Π. Defining the normalized

total potential energy as Π̄ =
Π

Pwo
, one gets

Π̄ =
1

2

a1
wo

(
a1
wo
− 2

)
(8.33)

where a1 is the amplitude of the trial function Eq. (8.25) and wo is the exact amplitude.

The plot of the function Π̄(a1) is shown in Fig. (8.6).

⇧̄

a1

wo2.0 1.0 0 

�1

2 Stationary point 

Figure 8.6: By varying the amplitude around
a1
wo

= 1, Π̄ does not change.

The function Π̄(a1) is a parabola with a stationary point at a1 = wo. The stationary

point is at the same time the minimum. The negative value of the minimum (actual) value

of the total potential energy comes from the choice of the reference level of the potential

energy. In mechanics, the reference level is the position of the undeformed axis of the beam.

Upon loading, the beam is loosing the potential energy and the second term in Eq. (8.21)

is negative and larger than the first term of the stored elastic energy.

Even though the accuracy of one term approximation in the Fourier series expansion, Eq.

(8.22) gave a very good approximation (1.4% error), the solution can be further improved

by considering the next term in the expansion, according to Eq. (8.24). In this case the
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total potential energy is the function of two unknown amplitudes, Π = Π(a1, a3) and the

solution is obtained from two algebraic equations

∂Π

∂a1
= 0,

∂Π

∂a3
= 0 (8.34)

8.5 Solution by Taylor expansion

Consider the same sample problem of the cantilever beam under the tip point force. Assume

the solution as a power series

w(x) =
N∑
n=1

anx
n (8.35)

For illustration, truncate the series by taking the four first terms

w(x) = a0 + a1x+ a2x
2 + a3x

3 (8.36)

The kinematic boundary conditions are

w(x = 0) = 0; w′(x = 0) = 0 (8.37)

It is easy to see that displacement boundary conditions are met if ao = a1 = 0. The

displacements, slopes and curvature become

w(x) = a2x
2 + a3x

3 (8.38a)

w′(x) = 2a2x+ 3a3x
2 (8.38b)

w′′(x) = 2a2 + 6a3x (8.38c)

The tip displacement is

w(x = l) = wo = a2l
2 + a3l

3 (8.39)

The expression for the total potential energy is

Π =
EI

2

∫ l

0
(2a+ 6a3x)2 dx− P (a2l

2 + a3l
3) (8.40)

or after integration

Π =
EI

2
(4a22l + 12a2a3l

2 + 12a23l
3)− P (a2l

2 + a3l
3) (8.41)

The stationary of Π(a2, a3) implies that

∂Π

∂a2
= 0,

∂Π

∂a3
= 0 (8.42)

which leads to two linear algebraic equations for a2, a3

4a2 + 6a3l =
Pl

EI
(8.43a)

6a2 + 12a3l =
Pl

EI
(8.43b)
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where solution is

a2 =
Pl

2EI
, a3 = − P

6EI
(8.44)

The deflection of the beam is then

w(x) =
P

EI

(
lx2

2
− x3

6

)
(8.45)

The tip deflection is obtained

wo = w(x = l) =
Pl3

3EI
(8.46)

This is the exact solution of the problem. The exact solution was obtained in this case

because the first four terms of the Taylor expansion contained the actual deflected shape.

Note that the exact solution was obtained by the Ritz method without imposing the static

boundary conditions at the tip V = −P and M = 0. The graphical interpretation of the

stationary condition with two degrees of freedom is obtained by plotting Eq. (8.35) in the

space (Π, a2, a3), Fig. (8.7).

Π 

a2 

a3 0 

Figure 8.7: The potential energy as a paraboloid.

8.6 Castigliano Theorem

This theorem applies to statically determined structures and system subjected to concen-

trated forces or moments. The distribution of bending moments can be uniquely determined

from global equilibrium as function of the forces, U = U(P ). The total potential energy is

Π = U(P )− Pwo (8.47)
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For a given deflection amplitude wo, the magnitude of the load adjust itself so as to

make the total potential energy stationary. Mathematically

δ[Π(P )] = δ[U(P )− Pwo] =
dU

dP
δP − woδP =

[
dU(P )

dP
− wo

]
δP = 0 (8.48)

We have proved that the displacement under the force in the direction of the force is

equal to the derivative of the elastic energy stored with respect to the force.

In order to interpret the stationary property of Π, consider a cantilever beam with the

force P at its tip. The bending moment distribution is M(x) = P (l − x). Let’s choose the

force formulation of the total potential energy, Eq. (??). The total potential energy is

Π =
P 2

2EI

∫ l

0
(l − x)2dx− Pwo (8.49)

After integration

Π(P ) = P

(
Pl3

6EI
− wo

)
(8.50)

The plot of this function is shown in Fig (8.8).

0 

Π(P) 

P 
6EIwo

l3

3EIwo

l3

Figure 8.8: Parabolic variation of the total potential energy with the force P for a given

central deflection.

The parabola has two roots at P1 = 0 and at P2 =
6EIwo
l3

. The stationary point is at

P =
3EIwo
l3

(8.51)

which is the exact solution of the problem.

As an illustration, consider two simple structural systems. The first system of two beams

is shown in Fig. (8.9).

This problem was solved earlier using displacements and slope continuity. A much simple

solution follows. The bending moment distributions are

Beam (A) M(x) = −Px 0 < x < l

Beam (B) M(x) = 1
2Px 0 < x < l

Beam (C) M(x) = −1
2Px 0 < x < l

(8.52)
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Figure 8.9: Statically determined system and bending moment distribution.

The bending strain energy is

U(P ) =

∫ l

0

1

2EI

[
P 2 +

(
P

2

)2

+

(
P

2

)2
]
x2 dx =

3

2
P 2 l

3

3
=

1

2
P 2l3 (8.53)

From the relative contributions of the three beams in Eq. (8.44), it is seen that the

horizontal cantilever contributes twice to the tip deflection compared to the vertical beam.

l 

l 

B 

A 

P wB wA 

wo 

Figure 8.10: two welded beams forming an elbow.

The second system consists of an elbow. From Fig. (8.10), the bending moment distri-

bution is

Beam (A) M(x) = Px

Beam (B) M(x) = Pl
(8.54)

The elastic bending energy of the system is

U(P ) =
1

2EI

∫ l

0
(Px)2 dx+

1

2EI

∫ l

0
(Pl)2 dx =

P 2

2EI

4l3

3
(8.55)
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The total deflection in the direction of the force is

wo =
dU

dP
=

4

3

Pl3

EI
(8.56)

Proof of the Castigliano Theorem for a system of point loads, Pi

The corresponding displacements are denoted by wi, see Fig. (8.11).

P1 P2 

w1 w2 

Figure 8.11: An elastic body (structure) loaded by a system of concentrated forces.

The work of external forces is

W =
∑
i

Piwi = Piwi (8.57)

It is assumed that the energy stored can be expressed in terms of all the point forces,

U = U(Pi). Let’s keep all point forces at fixed values and vary only one, say Pk. For

equilibrium, the total potential energy of the system should be stationary with respect to

this change. Thus,

δΠ = δ(U −W ) =
dU

dPk
δPk − wkδPk

=

(
dU

dPk
− wk

)
δPk = 0

(8.58)

The extended Castigliano theorem is

wk =
∂U(Pi)

∂Pk
(8.59)

For example, if there are two point loads applied,

w2 =
∂U(P1, P2)

∂P2
(8.60)

Usually the Castigliano theorem gives only deflection at a given point but not the

deflected shape. The extended theorem ca be used to predict the deflected shape.
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Figure 8.12: Cantilever beam loaded b two point forces.

Illustration

Consider a cantilever beam loaded by two point forces. One force P is applied at the tip

and the other force P1 acts at a distance η from the support.

The bending moment distribution is

MA(x) = P (l − x) + P1(η − x) for 0 < x < η

MB(x) = P (l − x) for η < x < l
(8.61)

The bending strain energy is

U(P, P1) =
1

2EI

∫ η

0
M2
A dx+

1

2EI

∫ l

η
M2
B dx (8.62)

According to Eq. (8.49), the deflection under the point load P1 is

w1 =
∂U(P, P1)

∂P1
=

1

EI

∫ η

0
MA

∂MA

∂P1
dx+

1

EI

∫ l

η
MB

∂MB

∂P1
dx (8.63)

The derivatives of the bending moments are

∂MA

∂P1
= η − x (8.64a)

∂MB

∂P1
= 0 (8.64b)

Substituting Eqs. (8.51) and (??) into (??), one gets

w1 =
1

EI

∫ η

0
[P (l − x) + P1(η − x)](η − x) dx (8.65)

This equation is valid for any combination of P and P1. We can therefore assume that

P1 is a “dummy” force and can be set equal to zero. Then, Eq. (??) reduces to

w1 =
1

EI

∫ η

0
P (l − x)(η − x) dx (8.66)
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which gives, after integration,

w1(η) =
Pl3

3EI

[
3

2

(η
l

)2
− 1

2

(η
l

)3]
(8.67)

In the above solution η is an arbitrary position along the beam and w1(η) is the correspond-

ing deflection. By changing the variables

η → x

w1(η) = w(x)
(8.68)

we can recover the exact deflected shape of the cantilever beam

w(x) =
Pl3

3EI

[
3

2

(x
l

)2
− 1

2

(x
l

)3]
(8.69)

The above example illustrated a great flexibility of the Castigliano method in solving stat-

ically determined problems.
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