
Structural Mechanics 2.080 Lecture 5 Semester Yr

Lecture 5: Solution Method for Beam Deflections

5.1 Governing Equations

So far we have established three groups of equations fully characterizing the response of

beams to different types of loading. In Lecture 2 relations were established to calculate

strains from the displacement field.

ε(x, z) = ε◦(x) + zκ (5.1)

where

ε◦(x) =
du

dx
+

1

2

(
dw

dx

)2

, κ = −d2w

dx2
(5.2)

The above geometrical relation are independent on equilibrium and apply to any kind of

materials.

The second set of equations, derived in Lecture 3, is the equilibrium requirement

dV ∗

dx
+ q(x) = 0 − force equilibrium (5.3)

dM

dx
− V = 0 − moment equilibrium (5.4)

where V ∗ = V +N
dw

dx
is the effective shear. (5.5)

dN

dx
= 0 (5.6)

Eliminating V and V ∗ between the above equations, the beam equilibrium equation was

obtained (See Eq. (3.74))
d2M

dx2
+N

d2w

dx2
+ q = 0 (5.7)

The derivation of the equilibrium is valid for all types of materials. In the theory of

moderately large deflections, the equilibrium is coupled with the kinematics.

The third group of equation define the material behavior and relates the generalized

strains to generalized forces

N = EAε◦ (5.8)

M = EIκ (5.9)

Independence of geometry and equilibrium on constitutive equation allows to develop the

general framework of a solver in the Finite Element codes. The constitutive equations can

then be added as a user Defined Subroutines.

Let’s consider first the infinitesimal deformations (small rotations for which the term

1

2

(
dw

dx

)2

vanish in Eq. (5.2) and the term
d2w

dx2
= 0 in Eq. (5.7). Then from Eqs. (5.2,

5.4 and 5.8) one obtains

EA
d2u

dx2
= 0 (5.10)
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Eliminating the curvature and bending moments between Eqs. (5.2, 5.7 and 5.9), the beam

deflection equation is obtained

EI
d4w

dx4
= q(x) (5.11)

The concentrated load P can be treated as a special case of the distributed load q(x) =

Pδ(x− x0), where δ is the Dirac delta function.

Let’s consider first Eq. (5.4) for the axial displacement. The boundary conditions in

the x-direction are

(N − N̄)δu = 0 (5.12)

The general solution for u(x) is

du

dx
= D1 , u = D1x+D0 (5.13)

There are two integration constants, and two boundary conditions are needed. There are

only four combinations of boundary conditions:

1. Beam restricted from axial motion, see Fig. (5.1).

u(x = 0) = u(x = l) = 0 (5.14)

This gives rise to the solution of two algebraic equation

0 = D0 +D1 · 0 (5.15a)

0 = D0 +D1l (5.15b)

which gives D0 = D1 = 0 and u(x) = 0. This is a trivial case, for which the axial

force N = EA
du

dx
vanishes as well.

x 

u = 0 u = 0 Fixed 
(Kinematic) 

N = 0 N = 0 Sliding 
(Static) 

Mixed N = 0 u = 0 

Figure 5.1: Three combinations of in-plane boundary conditions for u(x).
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2. Beam allowed to slide in the x-direction on both ends.

N̄ = N = 0 at x = 0 and x = l (5.16)

The axial force is proportional to
du

dx
. From Eq. (5.13) we can see that the gradient

of u is zero along the entire beam. So, if N̄ = 0 or
du

dx
vanishes at one end, say x = 0,

D1 = 0 and automatically N̄ = 0 is satisfied at the other end, x = l. The integration

constant D0 is undetermined meaning that the rigid body translation of the entire

beam is allowed.

3. In order to prevent the rigid body translation, one end of the beam, say x = 0, must

be fixed against motion in the x-direction. Thus

N̄ = 0 or
du

dx
= 0 at x = 0 (5.17a)

u = 0 at x = l (5.17b)

which are precisely the boundary conditions for the third case. From Eq. (5.13) we

get

D1 = 0 (5.18a)

D1l +D2 = 0 → D2 = 0 (5.18b)

Now, the axial displacement vanishes, u(x) = 0 but the rigid body translation is

eliminated.

For all the above three cases of kinematic static and mixed boundary conditions, the

axial force was zero.

4. If one end of the beam (bar) is loaded by a given force N̄ and the other one is fixed,

the boundary conditions (BC) are

N = −N̄ , EA
du

dx
= 0 at x = 0

u = 0 at x = l
(5.19)

D1 = − N̄

EA
, D2 =

N̄ l

EA
(5.20)

and the solution is

u(x) =
N̄

EA
(l − x) (5.21)

The case in which the nonlinear term is retained in Eq. (5.2) is much more interesting.

This will be dealt with in the section on moderately large deflection of beams.
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We now turn our attention to the solution of the beam deflection, Eq. (5.11). This is

the fourth-order linear inhomogeneous equation which requires four boundary conditions.

There are four types of boundary conditions, defined by

(M − M̄)δw′ = 0 (5.22a)

(V − V̄ )δw = 0 (5.22b)

For the sake of illustration, we select a pin-pin BC for a beam loaded by the uniform

like load q, Fig. (5.2).

Figure 5.2: Pin support allows for rotation but not for vertical translation.

The bending moment is proportional to the curvature. Eq. (5.11) is then subjected to

the following boundary conditions:

w(x = 0) = w(x = l) = 0 (5.23a)

d2w

dx2

∣∣∣∣
x=0

=
d2w

dx2

∣∣∣∣
x=l

= 0 (5.23b)

Let’s integrate the differential equation four times with respect to x:

d3w

dx3
=

qx

EA
+ C1 (5.24a)

d2w

dx2
=

qx2

EA2
+ C1x+ C2 (5.24b)

dw

dx
=

qx3

EA6
+
C1x

2

2
+ C2x+ C3 (5.24c)

dw

dx
=

qx4

EA24
+
C1x

3

6
+
C2x

2

2
+ C3x+ C4 (5.24d)

Substituting the BC into the general solutions, one gets

0 = C2 (5.25a)

0 =
ql3

2EA
+ C1l + C2 (5.25b)

0 = C4 (5.25c)

0 =
ql4

24EA
+
C1l

3

6
+
C2l

2

2
+ C3l + C4 (5.25d)
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The solution of the above system is

C1 = −ql
2

(5.26a)

C2 = 0 (5.26b)

C3 =
ql3

12
(5.26c)

C4 = 0 (5.26d)

The load-displacement relation becomes

w(x) =
qx

24EA
(l3 − 2lx2 + x3) (5.27)

Differentiating Eq. (5.27) twice, the expression for the bending moment is

M(x) =
qx

2
(l − x) (5.28)

and differentiating again, the shear force becomes

V (x) =
dM

dx
=
q

2
(l − 2x) (5.29)

Plots of the normalized bending moments and shear forces are shown in Fig. (5.3).

Figure 5.3: Parabolic distribution of the bending moment and linear variation of the shear

force.

The shear force V = EI
d3w

dx3
is seen to vanish at the mid-span of the beam. Also the

slope
dw

dx
is zero at this location. We have proved that at the symmetry plane

V (x =
l

2
) = 0 (5.30a)

dw

dx

∣∣∣∣
x= l

2

= 0 (5.30b)

Inversely, if the problem is symmetric, that Eq. (5.30) must hold at the symmetry plane.

As an alternative formulation, one can consider a half of the beam with the symmetry BC.

Can you solve the above problem and compare it with solution of the pin-pin beam, Eq.

(5.27)?
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M = 0 
w = 0 

x V = 0 
dw

dx
= 0

l/2 

Figure 5.4: Simply-supported plate with symmetry boundary conditions.

It should be mentioned that the pin-pin supported beam is a statically determinate

structure. Therefore the distribution of shear forces and bending moments can be deter-

mined from the equilibrium equation alone. Can you do it and get correctly the signs?

The purpose of Lecture 5 is to present properties of the governing equations and solu-

tions. interested students are referred to end chapter of problem sets where many beams

with different loading and BC are considered. Also the recommended reference book and

monographs present solution to some common beam problems.

5.2 General Properties of the Beam Governing Equation:

General and Particular Solutions

Recall from the Calculus that solution of the inhomogeneous, linear ordinary differential

equation is a sum of the general solution of the homogeneous equation wg and the particular

solution of the inhomogeneous equation wp. The property of homogeneity means that

f(Ax) = Af(x). The homogeneous counterpart of Eq. (5.11) is

EI
d4w

dx4
= 0 or

d4w

dx4
= 0 (5.31)

and its solution, obtained by four integrations is the third order polynomial

wg(x) =
C1x

3

6
+
C2x

2

2
+ C3x+ C4 (5.32)

The particular solution wp of the beam deflection equation, Eq. (5.11) depends on the

loading, but not the boundary conditions. For the uniformly loaded beam the particular

solution is the first term in Eq. (5.23d). As an illustration, consider the same pin-pin

supported beam loaded by the triangular line load

q(x) = q0
2x

l
, 0 < x <

l

2
(5.33)

where q0 is the load intensity at mid-span x = l/2. The particular solution of this problem,

satisfying the governing equation is

wp =
q0x

5

60EIl
(5.34)
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Then, the full solution is w(x) = wg + wp.

Beam loaded by concentrated forces (or moments) requires special consideration.

Continuity requirements

A sudden change in the beam cross-section or loading may produce a discontinuous solution.

What quantities may suffer a jump and what must be continuous?

w 

Figure 5.5: The displacement and slope discontinuities are not allowed in beams.

In mechanics the discontinuity of a given function is denoted by a square bracket

[f(ξ)] = f(ξ+)− f(ξ−) (5.35)

where ξ+ and ξ− denote the values of the argument on the right and left hand of a discon-

tinuity. In the quasi-static theory of beam

[w] = 0 (5.36a)[
dw

dx

]
= 0 (5.36b)

The discontinuity in the vertical displacement means separation so of course it may not

occur. Why then slopes must be continuous for elastic beams? This is simple. A change

of slope is called a curvature. A jump in the slope gives an infinite curvature, and thus an

infinite bending moments. Such a situation is impossible, because the beam cross-section

will go into plastic range, and the beam will no longer stay elastic. Quantities that can be

discontinuous are

Bending monents [M ] = M̄ (5.37a)

Shear force [V ] = V̄ (5.37b)

As an illustration, consider a pin-pin supported beam loaded at mid-span by a point

force P .

As mentioned earlier, the point load can be considered as a limiting case of a continuous

line load with the help of the Dirac delta function

q(x) = Pδ(x− l

2
), where

∫
δ(x− l

2
)dx = 1 (5.38)

Even though techniques have been developed to deal with singularity functions for

beams, they require to use the apparatus of the mathematical theory of distribution. This
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P 
w = 0 
M = 0 

w = 0 
M = 0 

x 

w = 0 
M = 0 

l/2 

P

2

V = �P

2
dw

dx
= 0

Figure 5.6: Symmetric loading of a beam by a concentrated force.

is not the avenue that we will take. instead, a symmetry boundary condition will be im-

posed. Now, the concentrated load is not applied inside the beam 0 < x < l, governed by

the inhomogeneous differential equation, but at the boundary. Each half of the beam is

carrying half of the load. Therefore, the boundary conditions are

at x = 0 w = 0 (5.39a)

d2w

dx2
= 0 (5.39b)

at x =
l

2
V = −P

2
(5.39c)

dw

dx
= 0 (5.39d)

Because the loading is applied on the boundary, the differential equation becomes homo-

geneous. The solution of Eq. (5.31) is given by the third order polynomial, substituting the

above BC into the solution given by Eq. (5.32), a system of four linear algebraic equations

is obtained, where the solution is

C1 = − D

2EI
, C2 = 0, C3 =

Pl2

16EI
, C4 = 0 (5.40)

The deflection line is given by

w(x) =
Px

48EI
(3l2 − 4x2) (5.41)

and the central deflection (something to remember) is

w0 = w(x =
l

2
) =

pl3

48EI
(5.42)

The plot of the distribution of bending moment and shear forces along the length of the

beam determined from the calculated deflection line is shown in Fig. (5.7).

Note that the jump in the internal shear force is equal to the applied force

[V ] = Vright(x =
l

2
)− Vleft(x =

l

2
) = P (5.43)
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P 

M(x) 

�P

2
V(x) 

P

2

Figure 5.7: Bending moment is continuous at the mid-span, but the shear force is not.

If the point load is not applied at the mid-span but at an arbitrary distance x = a, the

beam must be divided into two parts 0 < x < a, a < x < l, and each part must be solved

independently.

First segment 0 < x < a wI(x) =
C1x

3

6
+
C2x

2

2
+ C3x+ C4 (5.44a)

Second segment a < x < l wII(x) =
C5x

3

6
+
C6x

2

2
+ C7x+ C8 (5.44b)

This gives rise to eight integration constants, four for each side. Would there be enough

conditions to determine these constants? The answer is YES.There are two boundary

conditions at x = 0, four continuity conditions at x = a, given by Eqs. (5.36-5.37) and,

again, two boundary conditions at x = l. In summary

BC, x = 0 Continuity, x = a BC, x = l

w = 0 [w] = 0 w = 0

M = 0

[
dw

dx

]
= 0 M = 0

[M ] = 0

[V ] = P

(5.45)

Note that there is no concentrated bending moment applied M̄ = 0 so that the bending

moment field is continueous across x = a. The concentrated force produces a jump in the

distribution of the shear forces, so V̄ = P .

We leave it to the reader to apply the above condition and solve the problem. More on

this problem can be found in two sections of this notes: Problem Sets and Recitations.

The method of superposition says that the deflections and slopes of the beam subjected

to a system of loads are equal to the sum of those quantities due to individual loads. In

other words the individual results may be superimposed to determine a combined response,

hence the term method of superposition.

This is a very powerful and convenient method since solutions for many support and load-

ing conditions are readily available in various engineering handbooks. Using the principle

of superposition, we may combine these solutions to obtain a solution for more complicated

loading conditions.

As an example, consider a clamped-clamped beam loaded by a uniform line load q and

concentrated force at the center P . The deflection formulas for the two individual loading
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are

w|uniform =
qx2

24EI
(l − x)2 (5.46a)

w|point =
Px2

48EI
(3l − 4x) (5.46b)

The solution for both loads acting together is

wtotal = w|uniform + w|point (5.47)

5.3 Statically Determined Beams

Beam for which the distribution of bending moments and shear forces can be determined

from the equilibrium alone are called statically determinate beams. For such beams M(x)

and V (x) are known and determination of beam deflection will be a much easier task.

Combining Eq. (5.9) with Eq. (5.2) one ends up with the following second order linear

differential equation

−EI d2w

dx2
= M(x) (5.48)

The bending moment, which by itself should satisfy the second order differential equa-

tion, Eq. (5.7) should now obey two stress boundary conditions at the beam ends. The

static boundary conditions are indicated in Fig. (5.8) for a pin-pin supported and cantilever

beam.

Figure 5.8: The static boundary conditions for a full and half of a beam.

Determination of bending moment and shear force diagrams is the subject of elementary

courses in statics, and the general procedure is not explained here. In the case of the simply

supported beam with a point load at the mid-span, the bending moments

M(x) =


Px

2
, 0 < x <

l

2
P (l − x)

2
,

l

2
< x < l

(5.49)

The bending moment vanishes at x = 0 and x = l.

The corresponding shear force V =
dM

dx
is

V (x) =


P

2
, 0 < x <

l

2

−P
2

,
l

2
< x < l

(5.50)
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At the beam center

[V ] =
P

2
−
[
−P

2

]
= P (5.51)

Because of shear force discontinuity at the beam center, the solution will be sought for

a half of the beam. Each half of the beam is carrying half of the load. We have shown

that the bending moment distribution satisfy two satin boundary condition. Therefore the

differential equation (5.49) is subjected only to two kinematic boundary conditions

w = 0 

x 
dw

dx
= 0

Figure 5.9: Symmetry boundary condition.

Integrating Eq. (5.48) twice one gets

−EIw =
Px3

12
+ C1x+ C2 (5.52)

The two integration constants, determined from the boundary conditions w(0) = 0,
dw

dx

∣∣∣∣
x= l

2

=

0, are

C1 = −Pl
2

16
, C2 = 0 (5.53)

and the deflection line of the beam is given by

w(x) =
Px

48EI
(3l2 − 4x2) 0 < x <

l

2
(5.54)

The second half of the beam is the mirror reflection, by symmetry. In particular, the

central deflection wo = w(x =
l

2
) is expressed by all input parameters of the beam as

wo =
Pl3

48EI
(5.55)

It will be helpful to remember the above formula for the rest of your professional life.

In summary, determination of deflections of statically determinate beams is much easier

than its statically indeterminate counterparts. The governing equation is of the second

order, and for symmetric problems there are only two integration constants.
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A 

RA RB 

B 

P a l - a 

Figure 5.10: Beam under off-center point load.

5.4 Continuity Conditions, an Example

In Section 5.4 the continuity requirements were formulated, but the system of eight algebraic

equations was not solved. Here a complete solution will be presented for a beam loaded by

a point force acting at an arbitrary location x = a.

The reaction forces are calculated from moment equilibrium:

RA = P
l − a
l

(5.56a)

RB = P
a

l
(5.56b)

The sum of the reaction forces is equal to P . The corresponding bending moments and

shear forces are

M(x) =


RAx =

P (l − a)x

l
,

RB(l − x) =
Pa(l − x)

l
,

V (x) =


P (l − a)

l
,

−Pa
l

,

0 < x < a

a < x < l

(5.57)

The jump in the shear force across the discontinuity point x = a is

[V ] = V + − V − =
P (l − a)

l
− (−Pa

l
) = P (5.58)

The bending moments are continuous on both sides, [M ] = 0. Therefore the static conti-

nuity conditions are automatically satisfied at x = a. The kinematic continuity conditions,

formulated in Eq. (5.36) require displacements and slopes to be continuous. Integrating

the governing equations (5.48) with (5.57) in two regions gives

−EIwI =
P (l − a)x3

6l
+ C1x+ C2 0 < x < a (5.59a)

−EIwII =
Pa

l
(
lx2

2
− x3

6
) + C3x+ C4 a < x < l (5.59b)

The four integration constants are found from two boundary condition and two continuity

condition

w(0) = w(l) = 0, wI(a) = wII(a),
dwI

dx

∣∣∣∣
x=a

=
dwII

dx

∣∣∣∣
x=a

(5.60)
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This gives rise to the system of four linear inhomogeneous algebraic equations for C1, C2,

C3, and C4 

C2 = 0

Pal2

3
+ C3l + C4 = 0

Pba3

6l
+ C1a =

Pa

l

(
la2

2
− a3

6

)
+ C3a+ C4

Pba2

2l
+ C1 =

Pa

l

(
la− 1

2
a2
)

+ C3

(5.61)

A simple problem has led to a quite complex algebra. Now, you understand why the

previous example with eight unknown coefficients was only formulated but not solved. The

solution to the system (5.61) is

C1 = −Pa(a2 − 3al + 2l2)

6l
(5.62a)

C2 = 0 (5.62b)

C3 = −Pa(a2 + 2l2)

6l
(5.62c)

C4 =
Pa3

6
(5.62d)

and the final solution of unsymmetrically loaded beam is

wI(x) =
Px
[
a3 − 3a2l − lx2 + a(2l2 + x2)

]
6EIl

0 < x < a (5.63a)

wII(x) = −Pa(l − x)
[
a2 + x(−2l + x)

]
6EIl

a < x < l (5.63b)

One can easily check that the continuity conditions are met at x = a. The above example

teaches us that symmetry in nature and engineering not only means beauty, but also brings

simplicity.
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