
Structural Mechanics 2.080 Lecture 10 Semester Yr

Lecture 10: Advanced Topic in Column Buckling

10.1 The Tallest Column

In 1757 the Swiss mathematician Leonard Euler presented the famous solution for buckling

of a pin-pin column under compressive loading at its end. He also formulated and solved

the much more difficult problem of a clamped-free column loaded by its own weight. The

practical question was how tall the prismatic column could be before it buckles under its own

weight. In order to formulate this problem, the equation of equilibrium of a beam/column in

the axial direction must be re-visited. Instead the equation N ′ = 0 or N = const, we must

assume that there is a body force q per unit length q = Aρ, where A is the cross-sectional

area of the column and ρ is its mass density. Then, the equilibrium in the axial direction

requires that

N ′ = q or N = qx+ C (10.1)

In the coordinate system shown in Fig. (10.1), the axial force must be zero at x = l.

P 

l 

x 

q 

Figure 10.1: Column loaded at its tip (left) and loaded by its own weight (right).

The distribution of axial force along the length of the column is

N(x) = −q(l − x) (10.2)

where the minus sign indicates that N is the compressive force. As before, the input

parameters of the problem are E, I and q and the unknown is the critical length lc.

The derivation of the buckling problem for a classical column presented in Lecture 9 is

still valid but the axial force in Eq. (9.20) is no longer constant and thus should be kept

inside the integral.

For the present problem the first variation of the total potential energy is

δΠ = −
∫ l

0
Mδw′′ dx+

∫ l

0
q(l − x)w′δw′ dx (10.3)
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Integrating the right hand side of Eq. (10.3) by part, one gets∫ l

0

[
M ′′ + q(l − x)w′

]
δw dx+ Boundary terms = 0 (10.4)

where

Boundary terms = −Mδw′
∣∣l
0

+M ′δw
∣∣l
0

+ q(l − x)w′δw (10.5)

at x = 0, δw = δw′ = 0; and at x = l, M = 0, V = M ′ = 0 and l − x = 0. Therefore

the boundary terms vanish (see the dedication in Section 3.5). Using the elasticity law,

M = −EIw′′, the local equilibrium equation for the column self buckling becomes

EI
d4w

dx4
+

d

dx

[
q(l − x)

dw

dx

]
= 0 (10.6)

Integrating once, we get

EI
d3w

dx3
+ q(l − x)dw = 0 (10.7)

The integration constant is zero because the shear force vanishes at the free end x = l. The

governing equation is the third order linear differential equation with a variable coefficient.

The solution is no longer represented by the harmonic function. The way to solve the

problem is to introduce two new variables

ξ =
2

3

√
q(l − x)3

EI
, u =

dw

dξ
(10.8)

Then, Eq. (10.7) transforms to the Bessel equation

d2u

dξ2
+

1

ξ

du

dξ
+ (1− 1

9ξ2
)u = 0 (10.9)

Omitting the details of the calculation, the critical length of the column is found to be

l3c =
9EI

4q
j21
3

(10.10)

where j 1
3

= 1.866 is the root of the Bessel function of the third kind. Finally

l3c = 7.837
EI

q
(10.11)

The total weight of the column material is Nc = lcq. In terms of the total weight, the

critical length is

l2c = 7.84
EI

Nc
(10.12)

For comparison, the length of the free-clamped column at buckling loaded by the same

weight is

l2c =
π2

4

EI

Nc
= 2.47

EI

Nc
(10.13)

The bottom of both column sees the same weight, but the critical length of the column

undergoing self-buckling is

√
7.84

2.47
= 1.78 times taller than a similar cross-section column

loaded at its tip.
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Example

A steel tubular mast solidly built-in the foundation and is free on its top. The cylinder is

t = 3 mm thick and has a radius of R = 50 mm. What is the critical length of the mast to

buckle under its own weight?

The total weight of the mast is

Nc = Alρ (10.14)

where A is the cross-sectional area, A = 2πRt. The second moment of inertia of the thin-

walled tube is I = πR3t. From Eq. (10.12)

l2c = 7.84
EπR3t

2πRtlcρ
(10.15)

from which one gets

lc = 3

√
3.92ER2

ρ
= 65 m (10.16)

The above solution applies to a prismatic column of a constant cross-section.

Approximate solution can be derived from the Trefftz condition δ2Π = 0. Starting from

Eq. (10.3) and performing the second variation one gets

EI

∫ l

0
δw′′δw′ dx+

∫ l

0
q(l − x)δw′δw dx (10.17)

The critical compressive body force is then

q = EI

∫ l

0
φ′′φ′′ dx∫ l

0
(l − x)φ′φ′ dx

(10.18)

As compared with the standard Trefftz formula for tip loaded column, there is the term

(l− x) in the denominator. As an example consider the simplest parabolic deflection shape

φ = x2 (10.19a)

φ′ = 2x (10.19b)

φ′′ = 2 (10.19c)

Introducing the above expression into Eq. (10.18), the critical buckling weight per unit

length is

q =
12EI

l3
(10.20)
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The error in this approximation is
12− 7.837

7.837
= 53% which is not good. As a second trial

consider a power shape function with a fractional exponent α

φ = xα (10.21a)

φ′ = αxα−1 (10.21b)

φ′′ = α(α− 1)xα−2 (10.21c)

The resulting solution is

q =
2EI

l3
α(α− 1)(2α− 1)

2α− 3
(10.22)

The critical buckling parameter attains a minimums at α = 1.75. The minimum buckling

load is

qmin = 9.8
EI

l3
(10.23)

The error is slashed by half but it is still large at 25%. In the third attempt, let’s consider

the trigonometric function

φ = 1− cos
πx

2l
(10.24a)

φ′ =
( π

2l

)
sin

πx

2l
(10.24b)

φ′′ =
( π

2l

)2
cos

πx

2l
(10.24c)

In addition to satisfying clamped kinematic condition at x = 0, the cosine shape gives the

zero bending moment at the top. Substituting Eqs. (10.24) into the Trefftz condition, Eq.

(10.18), the following closed-form solution is obtained

q =
EI

l3
π4

2(π2 − 4)
= 8.29

EI

l3
(10.25)

which differs by only 6% from the exact solution. The true shape of the column which

buckles by its own weight is the Bessel function but the trigonometric function provides a

very good approximation.

For over 200 years the Euler solution of buckling of a column under its own weight

remains unchallenged. In 1960 Keller and Niordson asked the question by how much can

the height of the column be increased. If the same volume of material is distributed as a

constant cross-section prismatic structure of the radius r = 0.1 m, the length of the column

would be

l =
V

πr2
=

1

π0.12
= 32 m

and the weight per unit length of a still column will be

q =
V

l
=

7.8× 104

32
= 24 N/m
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Using Eq. (10.12) we can check if such a column will stay or buckle under its own weight

l2c = 7.84
EI

N

where I =
πr4

4
, N = V ρ and E = 2.1 × 1011 N/m2. Substituting the above values, the

critical length becomes lc = 26 m. This means that the 32 m prismatic column will buckle

and cannot be erected. By shaping the column according to Fig. (10.2) its length can be

increase by a factor of 86/26 = 3.3.

If the cross-section is variable, this question has led to a very complex mathematical

problem. Some aspects of this solution are still studied up to now. The problem is well-

posed if the optimal solution is sought under a constant, given volume of the material.

There is no simple closed-form solution to the problem so the answer is obtained through

numerical optimization, see Fig. (10.2).

y x 

z 

100 

80 

60 

40 

20 

0 
0.5 

0 

-0.5 -0.5 

0 

0.5 

Figure 10.2: The shape of the tallest column.

Note that the height of the column was scaled down to fit on the page. To give you an

idea, the steel column of the total volume of 1.0 m3 and the bare radius of 10 cm could be

as high as l = 86 m.

10.2 Deflection Behavior for Beam with Compressive Axial

Loads and Transverse Loads

Consider a simply supported beam with a fixed load f applied at the middle as shown in

Fig. (10.3). Additionally, the beam is subjected to a compressive axial load P . The total
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Figure 10.3: Simply supported beam with intermediate transverse load.

potential energy for this mechanical system is

Πtotal =

∫ L

0

1

2
EI(v′′)2 dx− P

∫ L

0

1

2
(v′)2 dx− fv

(
L

2

)
(10.26)

If f = 0, we are looking at a classical buckling problem; viz., the beam remains straight

until a critical load is reached after which the beam bends suddenly. The critical load for

the configuration shown is Pcr = π2EI/L2. Let’s investigate the behavior for f 6= 0.

The stationary points of the potential energy still give the solutions v(x) which satisfy

equilibrium. Let’s compute an approximate solution using the form

v(x) ≈ C sin
(
π
x

L

)
(10.27)

The derivatives of this function are

v′(x) = C
π

L
cos
(
π
x

L

)
v′′(x) = −C

(π
L

)2
sin
(
π
x

L

)
Inserting these into the potential energy yields

Πtotal =

∫ L

0

1

2
EI
(π
L

)4
C2 sin2

(
π
x

L

)
dx

− P
∫ L

0

1

2

(π
L

)2
C2 cos2

(
π
x

L

)
dx− fC sin

(
π
L/2

L

)
=

∫ L

0

1

2
EI
(π
L

)4
C2

[
1

2
− 1

2
cos

(
2πx

L

)]
dx

− P
∫ L

0

1

2

(π
L

)2
C2

[
1

2
+

1

2
cos

(
2πx

L

)]
dx− fC

=
1

4
EI
(π
L

)4
C2L− P 1

4

(π
L

)2
C2L− fC

The stationary condition yields

0 =
dΠtotal

dC
=

1

2
EI
(π
L

)4
CL− P 1

2

(π
L

)2
CL− f

= C

[
1

2
EI
(π
L

)4
L− P 1

2

(π
L

)2
L

]
− f = 0

(10.28)

10-6



Structural Mechanics 2.080 Lecture 10 Semester Yr

and thus

C =
f

EIπ4

2L3
− P π

2

2L

=
f2L/π2

EIπ2

L2
− P

=
2L

π2
f

Pcr − P

(10.29)

The approximate solution has the form

v(x) ≈ 2L

π2
f

Pcr − P
sin
(
π
x

L

)
(10.30)

The central deflection wo = v(x =
l

2
) is

wo =
fl3

48.7EI

1

1− P

Pc

(10.31)

For zero axial load, Eq. (10.31) predicts a linear relation between the lateral point load and

deflection wo. The approximate coefficient
π4

2
∼= 48.7 is very close to the exact value 48

for the pin-pin column loaded by the point force f . The linear relation holds also for any

constant value of P/Pc. A much more interesting picture is obtained by fixing the lateral

load and changing the axial load. Equation (10.31) can be written as

wo =
η

1− P

Pc

, where η =
fl3

48.7EI
(10.32)

which is plotted in Fig. (10.4). Note that the positive force is in compression while the

negative in tension. Application of the lateral force deflects the beam by the amount η.

Then, on application of the in-plane compressive load, the beam-column behaves as an

imperfect column. By reversing the sign of the in-plane load from compression into tension,

the central deflection becomes smaller and vanishes with P/Pc →∞. This is fully consistent

with our everyday experience that by tightening the rope/cable, its deflection is reduced.

10.3 Snap-through of a Two Bar System

This is a very interesting problem, because it summaries and even extends our knowledge.

There are three hinges so that each rod is a pin-pin column. The rods are elastic charac-

terized by the bending rigidity EI, axial rigidity EA. The initial stress-free configuration is

defined by the height w̄o, which was previously called the amplitude of initial imperfection.

10-7



Structural Mechanics 2.080 Lecture 10 Semester Yr
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Figure 10.4: Relationship between the axial load and lateral deflections.

Here, w̄o should be regarded as the initial shape of the structure. Upon application of the

load, a compressive axial force develops in the rod, their length shortens allowing for a

straight (flat) configuration. The system snaps into a new configuration where tensile force

develops in the rods. Depending on the slenderness ratio, they may buckle sometime during

the loading process.

Pre-buckling solution

Due to the unmovable hinges, the in-plane components of the displacement is zero, u = 0.

The strain in the bars develops by the presence of finite rotations

ε =
1

2
(w′)2 − 1

2
(w̄′)2 (10.33)

In the pre buckling configuration the rods are straight, so

w′ =
wo
l

, w̄′ =
w̄o
l

(10.34)

and Eq. (10.33) reduces to

ε =
1

2

(wo
l

)2
− 1

2

( w̄o
l

)2
(10.35)

The plot of the dimensionless strain versus the ratio wo/w̄o is shown in Fig. (10.6).

From the elasticity law, the axial force in the rod is

N = EAε =
EA

2

[(wo
l

)2
−
( w̄o
l

)2]
=

{
compressive for − w0 6 wo 6 w̄o
tensile for wo < −w̄o

(10.36)
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Figure 10.5: Initial and current shape of the two bar system.

Equilibrium between the external load P and the membrane force N requires that

P = −2N
wo
l

(10.37)

Eliminating the force N between Eqs. (10.36) and (10.37) yields

−P
2

l

wo
= EA

[
1

2

(wo
l

)2
− 1

2

( w̄o
l

)2]
(10.38)

or in a dimensionless form

P̄ = δ(δ̄2 − δ2) (10.39)

where

P̄ =
P

EA
, δ =

wo
l

, δ̄ =
w̄o
l

(10.40)

The equilibrium path given by Eq. (10.39) is the third order parabola with three roots at

δ = 0, δ = ±δ̄, see Fig. (10.7).

The loading process starts at A and the portion of the trajectory AB is stable. The

point B is the instability point. In the process is force controlled, there is a jump to the next

equilibrium configuration which is point E. So the system “snaps” into a tensile configuration

and this transition is in reality a dynamic problem. The process can be displacement control

and then the force P̄ is the reaction force which is positive on the segments ABC and EF

but negative on the segment CDE of the trajectory. This means that an opposite force

P̄ is required on CDE to keep the system in static equilibrium. By contrast, in the force

controlled process the inertia force is equilibrating the system at any time. The maximum

force occurs when
dP

dδ
= δ̄2 − 3δ2 = 0 (10.41)
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Figure 10.6: Transition from compressive into tensile strain.
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Figure 10.7: Equilibrium path in the snap-through problem.

The maximum occurs at δ = δ̄/
√

3 and the maximum force is P̄max =
2

3
√

3
δ̄3.

Any time during the loading phase AB there is a possibility for the rods to buckle. The

instant of buckling is detected by equating the axial force from Eq. (10.37) to the critical

buckling force of the pin-pin column

N =
Pcr

2

l

wo
=
π2EI

l2
(10.42)

The dimensionless version of this equation is

P̄cr =
Pcr

EA
= 2π2

δ

β2
(10.43)

where β =
l

r
is the slenderness ratio, and r2 =

I

A
is the radius of gyration of the cross-

section. In the coordinate system (P̄ , δ), the buckling point is determined by the intersection
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of the straight line, Eq. (10.42), and the third order parabola

2π2

β2
δ = δ(δ̄2 − δ2c ) (10.44)

The displacement to buckle is

δc =

√
δ̄2 − 2π2

β2
(10.45)

and the corresponding buckling force P̄c is

P̄c =
2π2

β2

√
δ̄2 − 2π2

β2
(10.46)

The graphical interpretation of the above analysis is shown in Fig. (10.8).

δ 

P̄

Slender column 

Stocky column 

0 

K L 

�̄��̄ δC 

P̄C

Figure 10.8: Non-linear pre-buckling path intersects with a linear post-buckling path.

There is a family of straight lines with the slenderness ratio as a parameter. The critical

slenderness ratio for which buckling will never occur is

β2cr =
2π

δ̄
(10.47)

This situation corresponds to the straight line tangent to the third order parabola. Of prac-

tical interest is the situation in which the bifurcation point occurs before the maximum force

is reached at δmax = δ̄/
√

3 and P̄max =
2

3
√

3
δ̄3. The corresponding minimum slenderness

ratio, calculated from Eq. (10.42) is

β2min =

√
3π

δ̄
(10.48)
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To sum up, there are three ranges of the slenderness ratio:

Table 10.1: Ranges of buckling response

βmin < β <∞ β = βmin β = βmin

P̄max
2π2

β2

√
δ̄2 − 2π2

β2
2

3
√

3
δ̄3 No buckling static

or dynamic

equilibrium pathδmax

√
δ̄2 − 2π2

β2
δ̄√
3

For the square cross-section h×h, the critical combination of the geometrical parameters

w̄o
h

= 36π
h

l
(10.49)

From the above solution, we conclude that snap-through of the bar system without

buckling will occur only for very shallow systems.

10.4 Dynamic Snap-Through

The present lecture notes are restricted to static and quasi-static problems. However, the

nature of the snap-through problem calls for the consideration of the full dynamic analy-

sis. Assume that the loading of the two-bar system is load controlled. There is a stable

equilibrium path on the portion AB. When P̄max =
2

3
√

3
δ̄3 is reached, the system jumps

instantaneously to the next equilibrium point F in the static solution. The magnitude of

the force is the same, but the corresponding displacement is determined from the solution

of the cubic equation
2

3
√

3
δ̄3 = δδ̄2 − δ3 (10.50)

This equation has three real roots

δ1 =
δ̄√
3
, δ2 = δ3 = − 2δ̄√

3
(10.51)

By adding inertia forces into the equation of equilibrium, the snap-through process occurs

in time. The bar system is first accelerated on the portion BCD of the descending force

and then decelerated on the rising portion DEF.

The dynamic solution is straight forward if the distributed mass of the rod is lumped

into two discrete point masses m = lAρ, as shown in Fig. (10.9).

By adding d’Alambert inertia forces into static equilibrium, Eq. (10.37), one gets

−P − 2m
ẅo
2

= 2N
wo
l

(10.52)

where now P is positive in tension.
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P 

m m 
wo 

Figure 10.9: The equivalent two massless bars and two lumped masses.

Eliminating the axial force N in the bars between Eqs. (10.36) and (10.52), one gets

the following differential equation

−P̄ − l2ρ

E
δ̈ = δ

[
δ2 − δ̄2

]
(10.53)

where the dot denotes differentiation with respect to time. It is convenient to introduce the

dimensionless time t̄ =
t

t1
, where t1 =

l

c
is the reference time, and c2 =

E

ρ
is the speed of

the longitudinal stress wave in a bar. In the force controlled system, the exciting term is

constant P̄ =
2

3
√

3
δ̄3. In the new dimensionless coordinate, Eq. (10.53) takes the form

−P̄ − δ̈ = δ3 − δ̄2δ (10.54)

where the dot denotes differentiation with respect to the dimensionless time t̄. Using the

chain rule of differentiation,

δ̈ =
dδ̇

dt̄
=

dδ̇

dδ

dδ

dt̄
=

dδ̇

dδ
δ̇ (10.55)

one can get a solution on the phase plane (δ, δ̇) rather tan in the time domain. Substituting

Eq. (10.55) into Eq. (10.54), the following equation is obtained

−P̄dδ − δ̇dδ̇ =
(
δ3 − δ̄2δ

)
dδ (10.56)

which can be readily integrated to give

−P̄ δ − 1

2
δ̇2 =

δ4

4
−

¯δ2δ2

2
+ C (10.57)

The integration constant C is determined from the initial condition that the velocity δ̇ is

zero when the deflection reaches δ =
1√
3

(point B). The solution for the velocity δ̇ is

δ̇ = 2δ̄2

√
−P

(
δ

δ̄

)
+

1

2

(
δ

δ̄

)2

− 1

4

(
δ

δ̄

)4

+
1

12
(10.58)
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In terms of the normalized velocity
δ̇

2δ̄2
= v̄ and the normalized deflection η =

δ

δ̄
, Eq.

(10.58) reads

v̄ =

√
− 2

3
√

3
η +

1

2
η2 − 1

4
η4 +

1

12
(10.59)

The plot of v̄ versus η is shown in Fig. (10.10).
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Figure 10.10: The plot of v̄ versus η in dynamic snap through.

The polynomial in η under the square root in Eq. (10.59) has two real roots, at η =
1√
3

and η = −
√

3. The dynamic motion starts at B, increases slowly, reaches a maximum

in F and falls rapidly to zero at the point G with the coordinate ηf =
√

3. Note that

the dynamic deflection overshoots considerably the deflection reached in the static problem

ηstat =
2√
3

= 1.15.

At the final stage when the motion of the system stops, there is enough tensile energy

stored in the bar to initial free vibration with the forcing term P̄ removed. The solution to

this phase is given by Eq. (10.57) with P̄ = 0, and the new integration constant C1 =
3

4
so that continuity of velocity is achieved. The plot of the free vibration of the system,

governed by

v̄ =

√
1

2
η2 − 1

4
η4 +

3

4
(10.60)

is shown in Fig. (10.11), in comparison with the dynamic snap-through plot.
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Figure 10.11: The plot of v̄ versus η in free vibration, in comparison with the dynamic-

through plot.
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