Lecture 9

Stability of Elastic Structures

Lecture 10

Advanced Topic in Column Buckling

Problem 9-1:
A clamped-free column is loaded at its tip by a load P. The issue here is to find the critical
buckling load.
a) Suggest a simple form of the buckled of the column, satisfying kinematic boundary
conditions.
b) Use the Rayleigh-Ritz quotient to find the approximate value of the buckling load.
¢) Come up with another buckling shape which would give you a lower value for the
buckling load.
d) Find the exact solution of the problem and show the convergence of the approximate

solution to the exact solution.

Follow the example of a pin-pin column, which is presented in the notes of Lecture 9.



Problem 9-1 Solution:

a) Kinematic boundary condition, in term of shape function @(x) , for a clamped-free

column is
$(0) =¢'(0)=0
Choose a buckling shape
P(x) = x>
¢'(x)=2x
9"(x)=2

b) Use Rayleigh-Ritz Quotient, the critical buckling load is

N = E[—I;¢"¢"dx
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¢) Choose a buckling shape similar to a cantilever beam

P#(x)=x" =3Lx*

@'(x)=3x>—6Lx
P"(x)=6x—-6L
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Compare to the result inb), N, =3—-, this buckling shape givers a lower value
L

d) Choose buckling shape

T
x)=1-cos—x
P(x) 5L
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X)=—sin—ux
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N, = 2.47%

Check for local equilibrium of the solution

4
EW" + Nw"= A{—EI (%) cos——x + EI
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This is the exact solution to the clamped-free buckling
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Problem 9-2:

Consider a clamped-free column loaded by a compressive force at the free end.

a) Determine the critical slenderness ratio S, distinguishing between the elastic and

plastic buckling response. What is the buckling stress and strain?

b) Calculate the critical plastic buckling load for = 0.54, ., and the corresponding

stress and strain.

c¢) Calculate the critical elastic buckling load for = 2/ . and the corresponding

stress and strain.

d) Compare all three results.

Problem 9-2 Solution:
a) First, find the bending load:

For Clamed-Free column

P 72 El _ 7 El
cr (2L)2 4L2

Second, find the buckling stress and strain

P 7’ El

cr

buckling A - 4AL2

cr

Recall that
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buckling - 4L2 - 4(L2/]/'2)

Then
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Recall that
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8 — O_cr J— 72-
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E 4p
Third, find when O puckting = T yietd
p=p,, when o, =0 ) which is
7°E
=0
2 y
4ﬂcrit
2
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4 - ﬁcrit
g,
T |E
E - IBcrit
g,

b) p= 0.58,,, the column yields + hits plastic buckling



c) S =28, the column will buckle elastically

7’E 7’E ’E
Ou = 2 = 2 2
4ﬂ 4(2ﬂcrit) 16ﬂc”it

2

o, T
gcr = = 2
E 16ﬂtrit
d) Compare the three results
O &
Yield o, £,
E 0.67
Elastic Bucklin 0.67 =0.070,
g ﬁcrit2 ’ ﬂcmz
Plastic Buckli 19.74 E 050 7.9 1.98
astic Buckling — =\u. =
4 ﬂcritz . 4ﬂcri12 ﬂcrit2

o,

|E
To simply our comparison, assumen =0.2, E =0.5FE (*)andrecall 7 [— =/,

(*)In order to compare plastic buckling to elastictyield, we need to make future

assumption about the material properties.




Problem 9-3: Consider the pin-pin column.

a) Suggest a polynomial buckling shape function ¢(x) to improve the approximate

solution derived in lecture note. Note that the one used in class was the parabolic

shape.
b) Determine the accuracy relative to the exact solution.
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Problem 9-3 Solution:

. . . /o . . X
a) The exact solution is w=sIn (Tj, use the none-dimensioned value y= Z, the Taylor
series expansion is
sinzy =my —

6

So we know the shape function must be

P(x)= C175+C2ﬂ(3 +...

For 0<x< L/ 2, the boundary conditions are

The first boundary condition gives

this doesn’t help.

The second boundary condition gives



¢'(x)=C +3C,x* =0

\ 1
¢ (Z=EJ=C1+ZC2=O

C,=—C

So we have

() = qw(—gqu

3

¢<z>=q(z—fz3j

We can us the Rayleigh-Ritz Quotient
T (g ax
$'(x)=C (1-47")d y/dx
(8'(0)) =C (1-87" +161*)(d y/dx)’
$"(x)=—8C y(dy/dx)’
(¢"(2)) =64C7 2> (d [ dx)’

h dy/ldx= ==
where d y/ 7

Since we have considered the shape function for 0 < x < L/ 2, we must adjust the limits on

the integral

v e
j(¢*) dx
2 é64C2 2dy/ldx) d
sy

2.[0;(?12 (1—8;(2 +16;(4)(d,{/dx)2 dx
[F 641 (10’ ds
JE (180 16(x/0)" ) (11

=...(after lengthly algebra)
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Ncr = 10?
b)
The result are compared with the polynomial used in class and the exact solution

Exact Solution Parabolic Cubic
Csin(7y) Cy+Cx’ Cy+Cyx’

Coefficient 12 10

oefficien =987
Error N/A 21.5% 1.3%

Notice how we significantly reduce the error by including a higher order term.




Problem 9-4:

Present a step-by-step derivation of the buckling solution of the pin-clamped column from the

local equilibrium equation.

Problem 9-4 Solution:

Boundary condition for this problem

w(O) = W(L) =0

w'(0)=0

EIw"(L)=0
Start with 4™ order ODE

EW"” + Pw"=0

We have an eigenvalue problem

2L
EI
A’ (/12 +£j=0
EI

,/P

i,=2,2=0,ﬂ3=/14=il E
Define i—K:&—ﬂ =+iK
\ £l T

w=C,+C,x+C,sinKx+C, cos Kx

11



Use the boundary conditions to solve for constants C,, C,, C, and C,

w(0)= 0
w(0)=0=C,+C,

C =-C,

Ww'(0)=0
w'(x)=C, + KC, cos Kx — KC, sin Kx
w'(0)=C,+KC, =0

C, =-KC,

w(L)=0

w(L)=C +C,L+C,sinKL+C,cosKL =0
Substitute C,, C, into the above expression

C,(-KL+sinKL)+C,(-1+cosKL)=0

w'(L)=0
w"(x)=-K’C,sin Kx— K*C, cos Kx
w"(L)=-K>C,sinKL—K*C, cos KL =0
—KL+sinKL —1+cosKL ||C, o
~K?’sinKL  K’cosKL ||C, -
det[ |=0

K cos KL(~KL +sin KL)—(~K” sin KL)(~1+cos KL) =0
KLcos KL—sin KL =0

sin KL
KL = =tan KL
cos KL
So the equation to solve in order to find P, is
tan KL-KL =0

The smallest roots are KL =0 and KL =4.49,

we choose KL =4.49






Problem 9-5:

a) Derive the solution for an imperfect clamped-free column (like that considered in

problem 9-1, following a similar derivation given in the notes for a pin-pin column in

the notes.

b) Find the ratio of current deflection amplitude to the amplitude of the initial
imperfection such that the resulting load is 80% of the theoretical buckling load of a

perfect column.

Problem 9-5 Solution:
a)

v_v(x) : shape of initial imperfection
w(x) : actual buckled shape

w (x) : amplitude of initial imperfection

o

w, : end amplitude of actual imperfection

Moment equilibrium of imperfect column
—EI(w=w)"+ P(w—w, )= 0
Perfect column
v_v(x)z 0

Assume that the initial imperfection is in the same shape as the buckling shaper

w(x)=w, (1-cosAx)

w(x)=w, (1-cos Ax)
From boundary condition

W(L): 0



w A*cos AL =0

1L2(2n+1j”

2

From moment equilibrium of imperfect column

—EIA* (w—1,)cos Ax+ Pw,[1-(1-cos Ax) | =0

Pw, =EIZ* (w—w,)

Perfect column

Imperfect column

P_, ®
Br W()
b) When i:().8
E,
o 1L 02
W() cr




Problem 9-6:
The pin-pin elastic column of length L (shown below) is an “I” section can buckle in either plane.

a) Determine the buckling load in terms of L, b,,b,, t and E. Assume that t<<b.

b) What should the ratio of b,/b, be in order for the probability of buckling in either of

the buckling planes to be the same?

Bonus: What could happen for very large width to thickness ratio?

Problem 9-6 Solution:
a) The moment s of inertia for an “I” shape cross-section is




If 7, <I_,the column will buckle in x-z plane

7°El. 7°E

— Yy

o = 1—2 = Wtbzz (b2 + 6b1)

If 7, <I_,the column will buckle in x-y plane

P _7'El, 7’E

o T 6P by

b) For the probability of buckling in either of the planes to be the same , we want
I,=1.

ézb; (b, +6b,)= %tbf

3
= L} —33—1:0
b, b, 2

The only physical solution is

c) If b >>t,b, >>t, then local plate buckling my develop.
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