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1 Governing equations for waves on the sea surface

In this chapter we shall model the water as an inviscid and incompressible fluid, and
consider waves of infinitesimal amplitude so that the linearized approximation suffices.

Recall in the first chapter that when compressibility is included the velocity potential
defined by u = V& is governed by the wave equation:

1 0%®

0= —— 1.1
v 2 Ot? (1.1)
where ¢ = \/dp/dp is the speed of sound. Consider the ratio
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As will be shown later, the phase speed of the fastest wave is w/k = \/gh where g is the
gravitational acceleration and A the sea depth. Now A is at most 4000 m in the ocean,

and the sound speed in water is ¢ = 1400 m/sec?, so that the ratio above is at most
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We therefore approximate (1.1) by
Vi =0 (1.2)

Let the free surface be z = ((x,y,t). Then for a gently sloping free surface the
vertical velocity of the fluid on the free surface must be equal to the vertical velocity of

the surface itself. i.e.,
o¢ 0%

a0z’
Having to do with the velocity only, this is called the kinematic boundary condition.

z=0. (1.3)

For small amplitude motion, the linearized momentum equation reads

du
P ot

Now let the total pressure be split into static and dynamic parts

= —-VP — pge, (1.4)

P=p,+p (1.5)
where p, is the static pressure
Po = —pgz (1.6)
which satisfies
0=—Vp, + —pge. (1.7)

Let us assume that wind is not present, so that the air above the sea surface is essentially
stagnant. The static pressure is hydrostatic, which can be taken to be zero at z = 0

without loss of generality. It follows that

ou AVAL
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so that
0P
= —p— 1.
p=—rg (1.9)

Because of its very small density the passive air motion due to surface waves has negible
effect on wate motion. We assume the dynamic air pressure to be zero on the free
surface.

It will be shown shortly that for sufficiently long waves, surface tension can be

ignored. Continuity of pressure requires that



to the leading order of approximation, we have, therefore

od
pg¢ + Por = 0, z=0. (1.10)

Being a statement on forces, this is called the dynamic boundary condition. The two

conditions (1.3) and (1.10) can be combined to give
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If surface tension is also included then we adopt the model where there is a thin
film covering the water surface with tension 7' per unit length. Consider a horizontal

rectangle dxdy on the free surface. The net vertical force on water from four sides of
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Continuity of vertical force on an unit area of the surface requires
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which can be combined with the kinematic condition (1.3) to give

2 ® T [ 2\ 0D
0 0 <a 0 )a =0, z=0 (1.13)
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When viscosity is neglected, the normal fluid velocity vanishes on the rigid seabed,
n-Voé =90 (1.14)

Let the sea bed be z = —h(z,y) then the unit normal is

no (e By 1) (1.15)
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Hence

z = —h(x,y) (1.16)



2 Progressive waves on a sea of constant depth

2.1 The velocity potential

Consider the simplest case of constant depth so that

o0

and sinusoidal waves with infinitively long crests parallel to the y axis. The motion is
in the vertical plane (z,z). Let us seek a solution representing a wavetrain advancing

along the z direction with frequency w and wave number £,
Pd = f(z)eikmfiwt (2‘2)

In order to satisfy (1.2), (1.13) and (2.1) we need

f"+Ef=0, —h<z2<0 (2.3)
T

—WAf 4 gf + =K f =0, z=0, (2.4)
p

fl=0, z=-h (2.5)

Clearly the solution to (2.3) and (2.5) is
f(z) = Bcoshk(z+ h)

implying
® = Bcosh k(z + h)e* ! (2.6)

In order to satisfy (2.4) we require
2 T s
w” = | gk + —k” ) tanh kh (2.7)
p

which is the dispersion relation between w and k. From (1.3) we get

aC aq) : tkr—iw
% 0| (BE sinh kh)e™** it (2.8)
Upon integration,
. Bksinh kh ., .
C — Aezkx—zwt — SH'I ezkx—zwt (29)
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where A denotes the surface wave amplitude, it follows that
. —iwA
~ ksinhkh

and

. —wA ika—iwt
o = PR coshk(z + h)e
—igA (1 N Tk2> cosh k(z + h)

qgp cosh kh

tkx—iwt
2.10
. ‘ (2.10)

2.2 The dispersion relation

Let us first examine the dispersion relation (2.7), where three lengths are present : the

depth h, the wavelength A = 27 /k, and the length \,, = 27 /k,, with

2 T
k=122 N = —on |2 (2.11)
T K gp

For reference we note that on the air-water interface, T/p = T4em?/s*, g = 980 cm/s?,
so that A, = 1.73em. The depth of oceanographic interest ranges from O(10cm) to

thousand of meters. The wavelength ranges from a few centimeters to hundreds of

W2 = 2gky, = 2, /% (2.12)

2 1k k2
Yo (1 + —) tanh kh (2.13)

w2, 2k, k2,

meters.

Let us introduce

then (2.7) is normalized to

Consider first waves of length of the order of A,. For depths of oceanographic

interest, h > A, or kh > 1, tanh kh ~ 1. Hence

w? 1k k?
= 1+ = 2.14
2 2k < * an> (2.14)
or, in dimensional form,
5 Tk?
w”=gk+— (2.15)
p
The phase velocity is
w g Tk?
= = /2L [14+ = 2.1
Tk k ( T > (216)



Defining

m
= m 2.17
o (2.17)

the preceding equation takes the normalized form
c 1 [k, k
2 2.18
o \/2 ( E T km> (2.18)

Tk
cx | —, if k/kn,>1, or M, <1 (2.19)
p

Clearly

Thus for wavelengths much shorter than 1.7 cm, capillarity alone is important, These

are called the capillary waves. On the other hand

¢ R \/%, if k/k, <1, or M\, <1 (2.20)

Thus for wavelength much longer than 1.73 c¢m, gravity alone is important; these are
called the gravity waves. Since in both limits, ¢ becomes large, there must be a minimum

for some intermediate k. From

dc? g N T —0
dk k2 p a
the minimum ¢ occurs when
k= % = ki, OF A= A (2.21)

The smallest value of ¢ is ¢,,,. For the intermediate range where both capillarity and
gravity are of comparable importance; the dispersion relation is plotted in figure (1).

Next we consider longer gravity waves where the depth effects are essential.

w = +/gktanhkh (2.22)

For gravity waves on deep water, kh > 1, tanh kh — 1. Hence

wa gk, cx % (2.23)

Thus longer waves travel faster. These are also called short gravity waves. If however

the waves are very long or the depth very small so that kh < 1, then tanh kh ~ kh and

wrk\/gh, c¢~\/gh (2.24)
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Figure 1: Phase speed of capillary-gravity waves in water much deeper than A,,.

Form intermediate values of kh, the phase speed decreases monotonically with increasing
kh. All long waves with kh < 1 travel at the same maximum speed limited by the depth,
Vv gh, hence there are non-dispersive. The dispersion relation is plotted in figure (77).

2.3 The flow field

For arbitrary k/k,, and kh, the velocities and dynamic pressure are easily found from

the potential (2.10) as follows

0d gkA Tk*\ coshk(z+h) p i
= ——=Z2""11 thr—iw 29
“ Ox w ( * qp > coshkh  © (2.25)
0P  —igkA Tk*\ sinhk(z +h) p i
i — 1 tkr—iw 2.9
v 0z w ( + qp > coshkh (2.26)
0d Tk?*\ coshk(z+h) ;. .
T All tkx—iwt 297
P P ot el ( + qgp > cosh kh ¢ ( )

Note that all these quantities decay monotonically in depth.
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Figure 2: Phase speed of capillary-gravity waves in water of constant depth

In deep water, kh > 1,

p:

2
gkA <1 n Tk ) ok gika—iwt (2.28)
w gp
. 2 _
z_(I) _ igk A (1 I Tk > k2 pika—iwt (2.29)
z w gp

0P Tk? _
_pa — ,OgA (1 + E) ekzezkmfzwt (230)

All dynamical quantities diminish exponentially to zero as kz — —oo. Thus the fluid

motion is limited to the surface layer of depth O(\). Gravity and capillary-gravity waves

are therefore surface waves.

For pure gravity waves in shallow water, 7' =0 and kh < 1, we get

U

w

p

gk

— eik:vfiwt (231)
w
= 0, (2.32)
0P tkxr—iw
= —pr = pgAe™T = pg( (2.33)

Note that the horizontal velocity is uniform in depth while the vertical velocity is neg-

ligible. Thus the fluid motion is essentially horizontal. The total pressure

P =p,+p=pg(¢—2) (2.34)

is hydrostatic and increases linearly with depth from the free surface.
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2.4 The particle orbit

In fluid mechanics there are two ways of describing fluid motion. In the Lagrangian
scheme, one follows the trajectory x, z of all fluid particles as functions of time. Each
fluid particle is identified by its static or initial position x,, z,. Therefore the instan-
taneous position at time ¢t depends parametrically on z,,2,. In the Eulerian scheme,
the fluid motion at any instant ¢ is described by the velocity field at all fixed positions
x, z. As the fluid moves, the point z, z is occupied by different fluid particles at different
times. At a particular time ¢, a fluid particle originally at (x,, z,) arrives at z, z, hence

its particle velocity must coincide with the fluid velocity there,

C;—f = u(x, z, ), % = w(zx, z,1) (2.35)
Once u,w are known for all z, z, ¢, we can in principle integrate the above equations to
get the particle trajectory. This Euler-Lagrange problem is in general very difficult.

In small amplitude waves, the fluid particle oscillates about its mean or initial posi-

tion by a small distance. Integration of (2.35) is relatively easy. Let
(T, 20, t) = o + T (X0, 20, 1),  andz(Z,, 20, 1) = 2o + T'(To, 20, 1) (2.36)

then 2’ < x, 7 < z in general. Equation (2.35) can be approximated by
dx’' dz
d_xt = u(xy, 2o, 1), d_i = w(xy, 20, 1) (2.37)
From (2.25) and (2.26), we get by integration,
' gk (1 + Tk2> cosh k(z, + h) -

o= w2 gp cosh kh
gkA Tk?\ coshk(z, + h) .
L kz, — wt 2.38
w2 ( * gp cosh kh sin(kz, = wi) (2.8
(2.39)
o gkA " Tk?\ sinhk(z, + h) pikTo—iwt
w2 qp cosh kh
gkA Tk*\ sinh k(z, + h)
_ 1 kz, — wt 2.40
w2 < * gp cosh kh cos (ko = wt) (2.40)
(2.41)
Letting
A Tk2 hk(z,+ h
N <1+ i ) cosh k(z, + 1) (2.42)
b w? cosh kh gp sinh k(z, + h)



we get

1,12 Z/Z

=z + e 1 (2.43)
The particle trajectory at any depth is an ellipse. Both horizontal (major) and vertical
(minor) axes of the ellipse decrease monotonically in depth. The minor axis diminishes
to zero at the seabed, hence the ellipse collapses to a horizontal line segment. In deep
water, the major and minor axes are equal

a=0b= # (1 + T—k2> e, (2.44)

w gp

therefore the orbits are circles with the radius diminishing exponentially with depth.

Also we can rewrite the trajectory as

. gkA (. TE\ coshk(z +h) .
_ 1 t—kx, 2.4
x 2 < + p osh kb sin(w T,) (2.45)
, gkA Tk*\ sinhk(z, +h) . m
= —— (1 — - — 2.4
z 2 < + ” “osh A sin(wt — kz, 2) (2.46)

When wt — kz, =0, 2’ = 0 and 2’ = b. A quarter period later, wt — k, = 7/2, 2’ = a
and z' = 0. Hence as time passes, the particle traces the elliptical orbit in the clockwise

direction.

2.5 Energy and Energy transport
Beneath a unit length of the free surface, the time-averaged kinetic energy density is
— p 0 R JR—
B = —/ dz <u2 + w2) (2.47)
2/
whereas the instantaneous potential energy density is

1 ds — dx 1 ) 1

Hence the time-average is

_ 1 — T
By = 5p9C* + 5 (2.49)
Let us rewrite (2.25) and (2.26) in (2.49):
gkA Tk*\ coshk(z+h) 4. vt
= = |1 tkx w 9.
éR{ w ( * qp coshkh  © ‘ (2:50)
—igkA Tk*\ sinhk(z+h) 4. _ive
— % 1 IRT w 2‘51
v { w < N qp coshkh  © ‘ (2:51)
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Then

_ p [ gkA\? TE2\* 1 /0 ) -
E, = =(=— 1 d h* k h h* k h
ke 4< - ) < + o) conZin ) z [cosh® k(z + h) + sinh® k(z + h)]
_p (gkAN’ L * sinh2kh  p (gkA)? L TR ? sinhkh
o4\ w gp 2k cosh’kh 4\ w gp k cosh kh
A? TE*\® h A? Tk?
_ <1+ k) gktar; kh _ pg <1+—k> (2.52)
4 gp w 4 ap
after using the dispersion relation. On the other hand,
_ pgA? Tk?
E, = 1 2.
T4 < g (2:53)

Hence the total energy density is

A = PN TE*\ _ pgA® K\ _ pgA? A
E=E,+E,= 1+—) = 14+ = 14 2m 2.54
v+ B, 2(+pg > tE > + %5 (2.54)

Note that the total energy is equally divided between kinetic and potential energies; this
is called the equipartition of energy.
We leave it as an exercise to show that the power flux (rate of energy flux) across a
station x is
dE 0 — o_____ L
= pds =155 = = / B, d: ~ TCG = B (2.55)

where ¢, is the speed of energy transport , or the group velocity

do ¢ [543 2kh e[+ +3 ok
Cg=—— =8 + = = {2y (2.56)
dk 2 ’Z_r; +1 sinh2kh 2 i‘—2 +1 sinh2kh
For pure gravity waves, k/k,, < 1 so that
c 2kh
=3 <1 * sinh 2kh> (2:57)

where the phase velocity is

c= w/%tanh kh (2.58)

In very deep water kh > 1, we have

=< =124,/ (2.59)



The shorter the waves the smaller the phase and group velocities. In shallow water

kh < 1,
cg =c=+/gh (2.60)
Long waves are the fastest and no longer dispersive.

For capillary-gravity waves with kh > 1, we have

2
c 12—2’54-3 c ,{\Tm+3 21 [pg
Cg = 5 k?n = 5 2 1 s km = )\— ? (261)
where
g TEk3
=y/>+ — 2.62
c Pl (2.62)

Note that ¢, = ¢ when k = £,,, and
cg2c if kZkn (2.63)

In the limit of pure capillary waves of k& > k,,, ¢, = 3¢/2. For pure gravity waves

¢y =c¢/2 as in (2.59).

3 Wave resistance of a two-dimensional obstacle

Ref: Lecture notes on Surface Wave Hydrodynamics Theodore T.Y. WU, Calif. Inst.Tech.

As an application of the information gathered so far, let us examine the wave resis-
tance on a two dimensional body steadily advancing parallel to the free surface. Let the
body speed be U from right to left and the sea depth be constant.

Due to two-dimensionality, waves generated must have crests parallel to the axis of
the body (y axis). After the steady state is reached, waves that keep up with the ship
must have the phase velocity equal to the body speed. In the coordinate system fixed
on the body, the waves are stationary. Consider first capillary -gravity waves in deep

water A\, = A\/\,, = O(1) and kh > 1. Equating U = ¢ we get from the normalized

1 1
2:2:— )\* — ]_
vi=c=5 (1) 3.1)

dispersion relation

where U, = U/c¢,,. Hence
)\z - 203)\* + 1 - 0 - ()\* - )\*1)()\* - )\*2)
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which can be solved to give

— 2+ (t 1) (3.2)
Ao
and
oy = — (3.3)
*1 — )\*2 .

Thus, as long as ¢, = U, > 1 two wave trains are present: the longer gravity wave
with length A,,, and the shorter capillary wave with length A,,. Since ¢;; < ¢ = U and
cgo > ¢ = U, and energy must be sent from the body, the longer gravity waves must
follow, while the shorter capillary waves stay ahead of, the body.

Balancing the power supply by the body and the power flux in both wave trains, we

get
Re = (c—c¢g))Er + (cgy — ) Es (3.4)
Recalling that
cg 1A +3
c  2X2+41

we find,

¢ _ 4 1 " 2 1 /A, 1 1/\
c 2 M4+1) 2 AN+ 2 22
For the longer wave we replace ¢,/c by ¢, /c. and A, by A, in the preceding

equation, and use (3.2), yielding

Cy, _a\1/2
1— 2 — (1t 3.5
1 (1) 35
Similarly we can show that
Cg.9 —4\1/2 Cgyq
22 1 = (1 — =1—- =L 3.6
. (1—¢) . (3.6)
Since , ,
- pgA7 1 pgAi 1 1 2 2
1 9 ( + )\*%> 92 )\*1 1 + )\*1 PG AT Ax2Cy ( )

we get finally

1 1
R = >P9 (A2 AT + Ay 43) (e = 1)'V? = >P9 (A2 AT + Ay 43) (UL = 1)1 (3.8)
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Note that when U, = 1, the two waves become the same; no power input from the body
is needed to maintain the single infinite train of waves; the wave resistance vanishes.
When U, < 1, no waves are generated; the disturbance is purely local and there is
also no wave resistance. To get the magnitude of R one must solve the boundary value
problem for the wave amplitudes A;, Ay which are affected by the size (relative to the
wavelengths), shape and depth of submergence.

When the speed is sufficiently high, pure gravity waves are generated behind the

body. Power balance then requires that

(1 _C __pgA2 1 kh
R_( U)E_ 2 (2 sinh 2kh (3.9

The wavelength generated by the moving body is given implicitly by

U (tanhkh)w
N kh

When U = /gh the waves generated are very long, kh < 1, ¢, — ¢ = +/gh, and the

(3.10)

wave resistance drops to zero. When U < y/gh, the waves are very short, kh > 1,

pgA®
R~
4

(3.11)

For intermediate speeds the dependence of wave resistance on speed is plotted in figure

(3).

4 Narrow-banded dispersive waves in general

In this section let us discuss the superposition of progressive sinusoidal waves with the

amplitudes spread over a narrow spectrum of wave numbers
((z,t) = / |A(K)| cos(kx — wt — 04)dk = R / A(k)e* =tk (4.1)
0 0

whereA(k) is complex denotes the dimensionless amplitude spectrum of dimension
(length)?. The component waves are dispersive with a general nonlinear relation w(k).
Let A(k) be different from zero only within a narrow band of wave numbers centered at

k,. Thus the integrand is of significance only in a small neighborhood of k,. We then

14
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Figure 3: Dependence of wave resistance on speed for pure gravity waves

approximate the integral by expanding for small Ak = k — k, and denote w, = w(k,),

w! = w'(k,), and w! = w"(k,),
(= % {eikoxz’wot /OOO A(k) 672Akzi(wwo)tdk}
= R {ei’ww /0 "k A(k) exp [iAkx — i <w’oAk + %wé’ (Ak)2> t - ] }
= R{A(z, t)eroret} (4.2)
where
Az, t) = /000 dk A(k) exp [iAkx —1 <w;Ak + %wg(Akf) t+ - ] (4.3)

Although the integration is formally extends from 0 to oo, the effective range is only
from k, — (Ak)y to ko + (Ak)pm, i,.e., the total range is O((Ak),,), where (Ak),, is the
bandwidth. Thus the total wave is almost a sinusoidal wavetrain with frequency w, and
wave number k,, and amplitude A(x,t) whose local value is slowly varying in space and
time. A(xz,t) is also called the envelope. How slow is its variation?

If we ignore terms of (Ak)? in the integrand, (4.3) reduces to

Az, t) = /000 dk A(k) exp [iAk(z — w!t)] (4.4)

15



Clearly A = A(z — w/t). Thus the envelope itself is a wave traveling at the speed w!.
This speed is called the group velocity,

_dw

cq(ko) = dk ) (4.5)

Note that the characteristic length and time scales are (Ak,,)~" and (w!)Ak,,)™" respec-
tively, therefore much longer than those of the component waves : k; ' and w;'. In other
words, (4.3) is adequate for the slow variation of A, in the spatial range of Ak, z = O(1)
and the time range of w Ak, t = O(1).
As a specific example we let the amplitude spectrum be a real constant within the
narrow band of k, — k, k, + K,
ko+r
(=A etkr=w®tdr k< k, (4.6)
ko—k

then

C — kOAelkofv—Z(.Uot /\H dé’elkog(x_cgt) + P
_ 2A sin /-i(:b‘ — Cgt) eiko:v—iwot _ Aeiko:v—iwot (4 7)
T — ¢4l '

where £ = k — k,/k, and _
4 2A sin k(z — ¢,t) (4.8)
(T — cqt)

as plotted in figure (4).
By differentiation, it can be verified that

% + cg% =0, (4.9)
Multiplying (4.9) by A*,
XU
and adding the result to its complex conjugate,
A% + CQA% =0,
we get 8|A|2 6|A|2
5 + ¢4 o 0 (4.10)
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Figure 4: Envelope of waves with a rectangular band of wavenumbers

We have seen that for a monochromatic wave train the energy density is proportional

to |A]%. Thus the time rate of change of the local energy density is balanced by the net

flux of energy by the group velocity.

Now let us examine the more accurate approximation (4.3). By straightforward

differentiation, we find

04 _ / h [—iw’(ko)Ak—W(Ak)z A(k)e dk

ot

04 _ * iS

o /0 (iAk)A(k)e™ dk
*A > .
5z = /0 (—(Ak)?) A(k)e dk

where
1
S=Akz— Akt — §wZ(Ak)2 t (4.11)

is the phase function. It can be easily verified that
0A n L0A Wl 9*A
- W — = -
ot ?0x 2 Ox?

(4.12)

By keeping the quadratic term in the expansion, (4.12) is now valid for a larger spatial

range of (Ak)?z = O(1). In the coordinate system moving at the group velocity, & =

17



T — cgt, T = t, we easily find

DA(E,7) DA DA  DA(6,T) DA

B R S T L Sl
so that (4.12) simplifies to the Schrodinger equation:
0A  wl 0?A
e - 4.1
or 2 0¢? (4.13)
By manipulations similar to those leading to (4.10), we get
OlAIZ w0 0A 0A*
el Ny i 4.14
or 2 0¢ 9/3 o (4.14)

Thus the local energy density is not conserved over a long distance of propagation.
Higher order effects of dispersion redistribute energy to other parts of the envelope.
For either a wave packet whose envelope has a finite length ( A(+oc) = 0), or for a

periodically modulated envelope (A(x) = A(z + L)), we can integrate (4.14) to give

9
§/|A|2dg ~0 (4.15)

where the integration extends over the entire wave packet or the group period. Thus

the total energy in the entire wave packet or in a group period is conserved.

2 Two-Dimensional Tsunami

Tsunamis are the water waves generated by submarine earthquakes. If the seafloor
displacement is known in the area of the earthquake, the water-wave problem is a purely
hydrodynamic one. Unfortunately, direct measurements near the epicenter are too dif-
ficult to make, and a good deal of effort has been centered on using water-wave records
measured at larger distances from the epicenter to infer roughly the nature of tectonic
movement. Hence, there has been considerable theoretical studies on water waves due
to a variety of ground movement.

As an introduction, let us consider an open ocean of constant depth and assume that
there is no wind and the tectonic disturbance on the bottom is independent of y. The
problem is two dimensional in the x, z plane. Thus, the velocity potential ®(x, z,t)
satisfies

0?d 0P

V2o = — +

o, 2.1
o2 022 0 (2.1)
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On the free surface the following conditions hold:

oC B 0P B
0P
EJrgC = 0, 2=0, (2.1.2b)

where the atmospheric pressure is assumed to be absent. the two conditions can be

combined to give
0*® N 0o
or 99, T
Let the seafloor be denoted by z = —h + H(z,t). If the ground motion is known,

0, z2=0 (2.1.2¢)

continuity of normal velocity gives

od 0H 0®0H
% = o Tawas e hrHEY. 23

Within the framework of linearization we assume that the amplitudes of H, 0H /0t and
OH/0Ox are small so that the quadratic term is negligible; hence

g—f:aa—ilz (z,t) onz=—h. (2.4)
From (3.4) two initial conditions must be further prescribed, i.e., ®(x,0,0) and ((z,0)
on the free surface, but nowhere else, because time derivatives appear only in the free-
surface conditions.

What is the physical significance of ®(x,0,0)? Assume that, before ¢t = 0, all is
calm, but at ¢ = 0 an impulsive pressure P,(x,t) = I§(t) is applied on the free surface.
Integrating Bernoulli’s equation from ¢ = 0— to ¢t = 04, we obtain

0+ I [0+ I
®(z,0,0+) — &(x,0,0—) + /_ gCdt = - /_ 6(t) dt = —
Since ®(x,0,0—) = 0 and ¢ must be finite, we obtain ®(x,0,0+) = I/p. Thus, the
initial value of ® represents physically an impulsive pressure acting on the free surface
at an instant slightly earlier than ¢ =0 4.

Equations (2.1), (3.4), and (2.4) now define a boundary-value problem which formally

resembles that of a simple harmonic case. For any finite ¢ it is expected that no motion

is felt at a great distance from the initial disturbance so that ®(z,t) — 0 as |z| — oo,

which implies that ® — 0 as || — co. Since the region does not involve any finite bodies,
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the problem can be readily solved by applying the exponential Fourier transform with

respect to x, defined by

Flk) = /_Oo e () dr,  flz) = i/_oo e F (k) d:. (2.5)

By taking Fourier transform of Laplace’s equation with respect to x, we get the

general solution

¢ = Asinh k(z + h) + Bcoshk(z + h) (2.6)
Fourier transforms of the boundary conditions give

on the free surface and

b, =W, z=—h (2.8)

on the mean sea bed. Let the free surface be undisturbed initially,

d(k,0,0) = ¢y(k,0,0) =0 (2.9)
We get from (2.7),
and from (2.8)
kA cosh kh — kBsinh kh = W (2.11)
It follows that -
—gW
By+w'B=—Y 2.12
¥ coshkh ( )

where w = y/gk tanh kh, subject to the initial conditions
B(k,0) =0, and B(k,0)=0 (2.13)

For the special case where W (z,t) = Hy(z)0(t), integation across the delta function
gives the the impulsive vertical displacement

Wt = Ho(x) (2.14)

0—
The initial-value problem can be replaced by

Bi+w’B=0 t>0+ (2.15)
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B(k,04+) =0, and By(k,0+) =

(2.16)

which can be readily solved fo B(t). Afterwards ®(k, t) follows from, from which ¢(k, t)
is found. By invese transform, we finally get ((x,t).

We leave it as an exercise to show that the free surface is given by

L[ Ho(k) 1 ihavon | k(oo
_ = Zlptk(ztw ik(z—w 2.17
¢ 2w /_oodkcoshkhQ[e te ) ( )
which can be written as
1 [  Hyk) . 1 [~ . :
(=5 / ) dkCOSO}E k)he“m coswt = o— / . dk Co(k)e™ cos wt . (2.18)
where -
z Hy(k)
k) = 2.1
Col) cosh kh (2.19)

Clearly, coswt is even in k.
In general, we can split Hy(z) into even and odd parts with respect to = : H§ and

Hg. 1t follows from the definition of Fourier transform that
Hy(k) = 2/ dx cos kxHg(x) — 22'/ drsinkxHS (),
0 0
= Hi(k)+ Hg(k)

where H is real and even in k and H{ is imaginary and odd in k.
For simplicity, let us consider Hy(z) (hence (o(x)) to be even in x. The case of odd
Hy(z) can be dealt with similarly. Eq. (2.18) may be written

1 [~ .
C(z,t) = —/ dk ¢ cos kx coswt
0

™

1 o S .
— 2_ Re / dk Cg[ez(k:v—wt) + ez(lcx-l-wt)]. (2‘20)
0

T
The first and second terms in the brackets above represent right- and left-going waves,

respectively.

2.1 Asympotic behavior at large time

For a better physical understanding, approximations are necessary. At large ¢ we can
employ the method of stationary phase devised by Kelvin. Heuristically, the idea is as

follows.
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Consider the integral
b
1(1) = / Fels (2.21)
a
where f and g are smooth functions of k. When ¢ is large, the phase tg of the sinusoidal
part oscillates rapidly as k varies. If one plots the integrand versus k, there is very little
net area under the curve due to cancellation unless there is a point at which the phase

is stationary, that is,

Jk) =0, k=k. (2.22)

In the neighborhood of this stationary point the oscillating factor of the integrand of
Eq. (2.23) may be written

e exp{it[g(k) — g(ko)]} -

The real part of exp{it[g(k) — g(ko)]} varies slowly, as sketched in Fig. 5, while the
imaginary part slowly crosses the k£ axis at k = ky. Therefore, a significant contribution
to th For a better physical understanding, approximations are necessary. At large t we
can employ the method of stationary phase devised by Kelvin. Heuristically, the idea is
as follows.

Consider the integral
b
I(t) = / fe's dk (2.23)
a
where f and g are smooth functions of k. When ¢ is large, the phase tg of the sinusoidal
part oscillates rapidly as k varies. If one plots the integrand versus k, there is very little
net area under the curve due to cancellation unless there is a point at which the phase

is stationary, that is,

gk =0, k=k. (2.24)

In the neighborhood of this stationary point the oscillating factor of the integrand of
Eq. (2.23) may be written

e exp{it[g(k) — g(ko)]} -

The real part of exp{it[g(k) — g(ko)]} varies slowly, as sketched in Fig. 5, while the

imaginary part slowly touches the k axis at k = ky. Therefore, a significant contribution
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Re  exp {itlg(k) - g(k)]}

1 %
~ g(k) - g(ko)

\\ | /
0 a, . b > k
ko
-1
Figure by MIT OCW.

Figure 5: The real part of exp{it[g(k) — g(ko)]}-

to the integral can be expected from this neighborhood. If we approximate g(k) by the

first two terms of the Taylor expansion

9(k) = gko) + 5 (k — ko ' ()

then the integral may be written

I =2tk f (k) /

—00

o0

dk exp Bz(k — ko)?tg" (ko) | ,

where the limits (a,b) have been approximated by (—oo, 00). Using the fact that
/OO e:l:itkz dk = <§)1/2 e:l:i7r/47

we finally have

. 2T 1/2 .
= CZtg(kO)f(k[]) (W) eim—/4, (225)

where the + sign is to be taken if ¢" (ko) < 0, and minus ifif ¢"(ky) > 0, . It can be
shown by a more elaborate analysis that the error is of order O(¢7!). Also if there is no
stationary point in the range (a,b), the integral is at most of order O(¢'). This and
other information can be found in Stoker (1957) or Carrier, Krook, and Pearson (1966).

Returning to Eq. (2.20), we need certain properties of the dispersion curve as sketched
in Fig. 6. Consider x > 0. For the first integral

gk) = k7 —w,

it may be seen from Fig. 6(b) that there is a stationary point at

= (ko) = Cylho) i T < (gh)'/2. (2.26)
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Figure by MIT OCW.

Figure 6: Variations of w, w’, and w” with k.

In the same interval (0, 00) of k, there is no stationary point for the second integral. It
follows from Eq. (2.25) that

2m 12 T
)|] cos [k'gx — w(ko)t + —

1 ~e
¢ = %Co(ko) {W 1

+O0@t ), =< (gh)?t, (2.27)
where use is made of the fact that w”(k) < 0 [Fig. 6(¢)], and
C=o@tly, x> (gh)/t. (2.28)

Now let us examine the physics represented by Eq. (2.27). An observer moving at a

1/2 gees a train of sinusoidal waves of wavenumber kg

certain speed xz/t lower than (gh)
[and frequency w(kg)] whose group velocity equals x/t. The amplitude of the wavetrain
decays as O(t~'/?). For large x/t we see from Fig. 6(a) that k, is small, hence, a faster
moving observer sees longer waves which are also of larger amplitude since (|w”(ko)|)"/?
is less. The precise shape of Hy(x) affects Hy(k) hence (y(k) and the amplitude of the
dispersed waves.

Summing up the views of many observers for the same ¢, we obtain a snapshot of the

free surface (see Fig. 7). Thus, at a constant ¢, long waves are found toward the front
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and short waves toward the rear. Now consider the snapshot at a later time ¢, > ¢;. Both
observers have now moved to the right. The spatial separation, however, has increased.
In particular, let & ~ & so that between them k,w ~ const. The total extent of a
monochromatic wavetrain with &, w now stretches with increasing ¢, implying that wave
crests are created in the course of propagation.

To follow a particular wave crest at its phase speed, an observer must travel at a
varying speed since kg and C(kg) do not remain constant as the crest moves into new
territory. However, if one moves at the group velocity of the waves of length 27 /ky,
one only sees sine waves of this length catching up from behind and then running away
toward the front, since their phase velocity exceeds the group velocity.

A similar picture exists for the left-going disturbance.

2.2 Leading waves of a tsunami due to symmetric vertical dis-

placement

The fastest waves correspond to k ~ 0 and move at the speed near (gh)Y/2. In the
neighborhood of the wave front, ¢'(k) ~ x/t — (gh)'/? is small, and the phase is nearly
stationary. Furthermore, w"”(k) ~ —(gh)'/?h?k is also very small and the approximation
by the stationary phase method is not valid. A better approximation is needed (Kajiura,

1963).

4! W= X/t =&

tr ) ’\k//j////
f il /\ l>//////

Figure by MIT OCW.

Figure 7: Space-time plot of dispersive waves between two moving observers.
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Since k ~ 0, we expand the phase function for small £ as follows:

g = K2 —w) =k () - (0" (k _ ’f36h2 L )

=k E — (gh)l/Z] + (gh’T)l/Zh?k3 4o (2.29)

Near the leading wave, 2/t — (gh)'/? can be zero; we must retain the term proportional

to k3. Again, only the first integral in Eq. (2.20) matters so that
¢ = i/w dk (¢ (k) cos(kx — wt) + O E
o2r 0 t

L e (o) /Ooo cos {k[x — (gh)""?1) + {%ﬂhﬂ "73} I

o >0

2
|

where use is made of the fact that (¢ is real. With the change of variables

2z — (gh)"/*]?

AR
(gh) 21t

and  k[z — (gh)Y?t] = Za,

the integral above becomes

@G0 [ o?
¢~ S (gh) V2 /0 dacos (Za—i— E) ; (2.30)
where .
G0 =150 = [ Hywyds 231)

is proportional to the total area of the seafloor displacement. The integral in (2.30)

above can be expressed in terms of Airy’s function of Z:

Ai(z) = 2 /000 da cos <Za + %3> | (2.32)

™

Thus, we have

9 1/31~
c~ |5

i 2 v 1/2
[W 3 Ha(0) Al {W} [z — (gh)'/t] o .

(2.33)

Ai(Z) is oscillatory for Z < 0 and decays exponentially for Z > 0. Its variation is shown

in Fig. 8.
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Figure by MIT OCW.

Figure 8: Leading wave due to a symmetrical surface hump or trough. The ordinate is

C[(gh)/*h2t/2]'(¢5(0)] 7", see Eq. (2.33).

The physical picture is as follows: For a fixed ¢, Z is proportional to x — (gh)'/?t
which is the distance from the wave front = (gh)'/?t. At a fixed instant the amplitude
is small ahead of the front, and the highest peak is at some distance behind. Toward
the rear, the amplitude and the wavelength decrease. Since Z is proportional to ¢=1/3,
the snapshots at different times are of the same form except that the spatial scale is
proportional to the factor t'/?, meaning that the same wave form is being stretched
out in time. During the evolution the amplitude decays as t~/® while the rest of the
wavetrain decays as t~'/2. Thus, the head lives longer than the rest of the body. Note
that the amplitude of the leading wave is proportional to I:I(?(O) which is equal to the

total area of the initial displacement H(x).

2.3 Tsunami Due to Tilting of the Bottom

Among the many features of tsunamis as recorded near a coast, two have been frequently
(but not always) reported (Shepard, 1963). One feature is that the arrival of a tsunami
is often preceded by the withdrawal of water from the beaches, and the other is that
the first crest may not be the largest. In this section we shall show an idealized model
which reproduces these features qualitatively.

Again any Hy(x) can be thought of as the sum of HS(z) and H§(x) which are odd and
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even in x, respectively. By linearity, the two parts may be treated separately first and
their results superimposed later. It is easily shown that the even part H§(x) has effects
very similar to the previous example of symmetrical initial displacement on the free
surface, the only difference being the factor (cosh kh)~" which cuts down the influence
of the short waves. We shall, therefore, only focus our attention to the odd part.

Let us introduce

Hy(x) = % (2.34)

so that HY(k) = ikB(k). Since HS(k) is odd, B must be real and even in k; hence,

C _ i > dk eika‘ ké(k)l( iwt+ 7z'wt)

Co2n ) cosh Kl 2\¢ ‘
1 d 0 eikx B 1 . )

= B T wt —wwt
2r dx J_ o dkcosh kh (k)2(e +e™)
1 d 00 eika: N ) '

= —— dk B(k)(e™" 4 7™y . 2.
o7 dr Re/O cosn o D) e+ e (2:35)

For large ¢ and away from the leading waves, the integrals can be dealt with by the
stationary phase method just as before, and many of the same qualitative features should
be expected. Let us only look at the neighborhood of the leading waves propagating
to x > 0. Again, the second integral dominates and the important contribution comes

from the neighborhood of k£ ~ 0. Hence
Re [ ake " Bk
¢ /0 cosh kh (%)

= Re B(0) / dk e* et
0

=~ Re B(0) /Ooo dk exp (2 {k[x — (gh)Y*t] + %(gh)”%%%})

= 7B(0) {W} - Ai { {W} " [z — (gh)1/2t]} ,
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as discussed earlier. Differentiating with respect to x, we have

B(0) [ 2 B 2 v 1/2
¢ 2 | (gh)'2h2t %Al{ |:(gh)1/2h2t:| [ — (gh)"/ t]}

_BO[ 2 1 2 1V »
— 2 |(gh)?nt] Al{[m] [x—(gh)/t]},

2

(2.36)

where

A(Z) = diZ Ai(2).

=2/3 which is much faster than the case

The leading wave attenuates with time as ¢
of a pure rise or fall (where ¢ ~ ¢t='/3). This result is due to the fact that the ground
movement is half positive and half negative, thereby reducing the net effect. The function
Ai'(Z) behaves as shown in Fig. 9. Note that

B(O):/ B(x)da::/ da:/ Hg(x')dx':—/ rHY(x)dx .

oo o.¢]

Thus, if the ground tilts down on the right and up on the left, B(0) > 0 and the wave
front propagating to the right is led by depression of water surface (hence withdrawal
from a beach). The subsequent crests increase in amplitude. On the left side, 2 < 0, the
wave front has the opposite phase and is led by a crest. If, however, the ground tilt is
opposite in direction, that is, down on the left and up on the right, then the right-going
wave front should be led by an elevation.

Kajiura pointed out that retaining the terms gk*h? in w(k) implies keeping dispersion
to the lowest order, and the same results, Eqs. (2.33) and (2.36), may be obtained
alternatively by invoking the long-wave approximation at the outset, which is clearly
appropriate far away from the source. It will be shown in Chapter Twelve that such
an approximation is given by the linearized Boussinesq equations which are, in one
dimension, equivalent to

9’C Jh <82§ h? 84C> .

o ="\ o T3

ox? 3 Oxt (2.37)
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Figure 9: Leading wave due to antisymmetric ground tilt ¢[B(0)]"![(gh)/2h?t/2]*/3, see
Eq. (2.36).

3 Radiation of surface waves forced by an oscillating

pressure

We demonstrate the reasoning which is typical in many similar radiation problems.

The governing equations are
with the kinematic boundary condition

¢, =GC, 2=0 (32)

and the dynamic boundary condition

%+¢t+g<:0 (3.3)

where p, is the prescribed air pressure. Eliminating the free surface displacement we

get

Gy + 99, = —%; z2=0. (3.4)

Let us consider only sinusoidal time dependence:
Pa = P(z)e ™" (3.5)
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and assume

oz, 2,t) = ®(z, 2)e ™ ((x,t) = n(z)e ™" (3.6)

then the governing equations become

Vi =, + P, =0, —00<z<0. (3.7)
O, = —iwn, z=0 (3.8)
and , .
w w
o, — ?(I) = @P(x), z=0. (3.9)

Define the Fourier transform and its inverse by

o) = / T e f (), flo) = = / " dovei® (o), (3.10)

o0

We then get the transforms of (3.1) and (3.4)

P, —a’®=0, 2<0 (3.11)
subject to , .
b, -2 d="P), z=0 (3.12)
g Py

The solution finite at z ~ —oo for all « is
P = Al

To satisfy the free surface condition

2 s
oA — W iwP(a)P(c)
g P9

hence

or

o 1 [ ~ , 1
— da:'P(x')2—/ da @ elols ___— (3.13)



Let

w
k=— 3.14
p (3.14)
we can rewrite (3.13) as
- o0 1 o @] -
p=" dx'P(x')—/ dov 6azcos(a(x 7)) (3.15)
P9 J s T Jo a—k
The final formal solution is
- . oo 1 oo !
¢ = Z—we_“"t/ dx'P(a:')—/ do eazcos(oz(x v)) (3.16)
Py . T Jo a—k
If we chose
P(z') = P,0(z") (3.17)
then
wP, 1 [
O Gr,2) = 2= / oy ¢ 05(07) (3.18)
pg T J a—k

is clearly the response to a concentrated surface pressure and the response to a pressure

distribution (3.16) can be written as a superposition of concentrated loads over the free

surface,
¢:/ d2' P(e)G(x — o', 2). (3.19)
where
wP, . .1 [
G(z,2,t) = &e“"t—/ da eazcos(ax) (3.20)
Pg T Jo a—Fk

In these results, e.g., (3.20), the Fourier integral is so far undefined since the integrand
has a real pole at @ = k which is on the path of integration. To make it mathematically
defined we can chose the principal value, deform the contour from below or from above

the pole as shown in figure (3). This indefiniteness is due to the assumption of quasi

o=k Re a Re o o=k Re a
I - - — e

0 0 ok 0

Figure 10: Possible paths of integration

steady state where the influence of the initial condition is no longer traceable. We must

now impose the radiation condition that waves must be outgoing as x — oo. This
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Figure 11: Closed contour in the upper half plane

condition can only be satisfied if we deform the contour from below. Denoting this
contour by I', we now manipulate the integral to exhibit the behavior at infinity, and to
verify the choice of path. For simplicity we focus attention on G. Due to symmetry, it

suffices to consider z > 0. Rewriting,

whk, .1
t)y=—2e “'—(I, +1I
g(xaza ) pg e 27T( 1+ 2)
; Po ) 1 i —iaT
= Zu)—e“‘”t—/claeo‘z c - (3.21)
g 2m Jp a—k a—k

Consider the first integral in (3.21). In order that the first integral converges for
large ||, we close the contour by a large circular arc in the upper half plane, as shown

in figure (11), where S > 0 along the arc. The term

. . &
elar — ez%ame Sazx

is exponentially small for positive x. Similarly, for the second integral we must chose
the contour by a large circular arc in the lower half plane as shown in figure (12).
Back to the first integral in (3.21)

eiaxeaz
L=/ d 3.22
! /F « a—k ( )

The contour integral is

Qax oz 1o INe'%1 QT oz 0 1o INe'%1
e e e e e e e e
da = dov + | da + dov
fio 5 /F ok /c ok Lo ok

0 QT 0z
- 11+0+/ das—°
ico a—k
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Figure 12: Closed contour in the lower half plane

The contribution by the circular arc C vanishes by Jordan’s lemma. The left hand side
is
LHS = 2mie' ek (3.23)

by Cauchy’s residue theorem. By the change of variable a = i3, the right hand side

becomes
0 —Bx zﬁz
RHS =1 d
1+ Z/ ﬁ Gk
Hence
) e —Bx zﬂz
I, = 2mie*@eh® 4 /0 g T (3.24)
Now consider I _
677,061136062
L= | d 3.25
=[5 (3.25)

and the contour integral along the contour closed in the lower half plane,

e—iaxeaz 0 e—icw:eaz
— }{da i =1 +0+ / do
0

o — a—k
Again no contribution comes from the circular arc C. Now the pole is outside the

contour hence LHS = 0. Let « = —if3 in the last integral we get

s J e~ BT o—iBy
= — 3.26
=i [ (3.26)

Adding the results (3.24) and (3.26).,

00 L —Bx ifz ; —Bx ,—ifz
: e € e €
11 =+ _[2 = 27Ti€ZkI€kZ + / d,B < " - s >

0 10—k —if —k
. o0 —Bz
= 2mie*"eM 4 2 / dﬂﬁ (B cos By + ksin fy) (3.27)
0
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Finally, the total potential is, on the side of x > 0,

w 1 .
t) = — —iwt T T —iwt
g(fL',Z, ) pge <27TZ( 1+ 2)) €

. . 1 o0 7ﬁZL‘
_ _%e—zwt {ezkxekz + - /0 dﬂﬁ (ﬁcosﬁz+ksinﬁz)} (3.28)

The first term gives an outgoing waves. For a concentrated load with amplitude
P,, the displacement amplitude is P,/pg. The integral above represent local effects
important only near the applied pressure. If the concentrated load is at x = 2/, one
simply replaces x by x — 2’ everywhere.

Note on Rayleigh’s fictitious damping: If frictional dissipation is accounted
for, there should be no wave at infinity. A way to derive the solution for dissipationless
theory is to allow a small damping at first, obtain the solution subject to the condition
that there is no radiation at infinity, and then take the limit of zero damping. In some
problem it is easy to include the real damping mechancism. in some others a fictitious
damping can be used.

For linearized water waves we can introduce a fictitious damping term in the mo-
mentum equation:

36_1751 = —%Vp —ge, —eu (3.29)
where € is the Rayleigh damping coefficient. Introducing the velocity potential u = V&

we get after integration with respect to space the fictitious Bernoulli equation

od p
L —ed =0 3.30
5 + ; +gz—¢ (3.30)
On the free surface it gives
0P | pa
— + — —ed =0 3.31
or T, 9l (3.31)

Combined with the kinematic boundary coondition we get on the free surface
) 0P 0P 1 Op,
ot? 0z ot p Ot

With the new term the Fourier integral has two simple poles slighlty off the real axis.

(3.32)

One is in the first quadrant and the other in the third. When the limit of zero damping
is taken a the end. they give the same residues as before, by Cauchy’ theorem.

This devise is of course artificial since in real fluid dissipation by viscosity is of a
different form.

We illustrate the use of Rayleigh’s damping for two ship-wave problems.
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4 Linearized equations in the moving coordinate sys-

tem

For simplicity let us assume that the disturbance travels at constant speed U from right
(' ~ 00) to left (2’ ~ —o0) in the stationary coordinate system (z',y, z,t) where water
at infinity is at rest. Let (x,y, z,t) be the coordinate system fixed on the disturbance,

then the two systems are related by
r=a +Ut, y=y, 2=2, t=t. (4.1)

Using the chain rule
OF (x(a',t),y,2,t) _OF Ot OFOx _OF OF

o' N Y A T
OF (x(2',1),y,2,t) OF 0z _ OF
ox' - 9r 0x'  Ox

or _oroy _or or _oro: _or
oy Oy oy dy 07 Oy odd 0z

The dynamic and kinematic boundary conditions on the free surface z = 0 become,

respectively:
O, +UD, + g +ed = —p“[()x), (4.2)
where € is the Rayleigh damping factor, and
G+UG=2, (4.3)
Inside the fluid we still have
Sy +Pyy +0,, =0, 2<0. (4.4)
Assuming steady state, (4.2) and (4.3) reduce to
Ud, + g( +€p = _paﬁx), 2 =0, (4.5)
and
UG =, z=0, (4.6)
which can be combined to
®Z+U—2®mm+6g®m = _gapa, z2=0 (4.7)
g g pg Ox

In the following examples we restrict to deep water so that ® — 0 as z — —o0.
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5 Two-dimensional waves due to a traveling surface

presssure

5.1 Solution by Fourier transform

The governing equations for ®(x, z) are

S +P,,=0, —h<z2<0 (5.1)

g € 1 Op,
Bt LB, 4, =L, 5.2
Tty U or © (52)
®—0, z— —oo, (5.3)

Applying the exponential Fourier transform with respect to x, defined with its inversion

by

_ o0 . 1 -
O(k,2) = / e P (x, 2)dx, ®(x,2) = 2—/ e*(k, 2)dk (5.4)
—00 T J—c0
we get a two-point boundary value problem for ®,
o
g - o= | ike - ik _
=, — kO + —& =——p,(k), =0 5.6
2 + 7 i (k), =z (5.6)
As an example we take
2 2 POL 272
pal(x) = Pe®/*F" | so that p,(k) = e L (5.7)
L
The solution to (5.5) is
® = Aelkl (5.8)

which vanishes at great depth. To satisfy the surface boundary condition we must have,

%W—ku% A= _;’“Up“ (5.9)
hence —i—’gPa(k)
=B - 10
and ) ik B, ()t
O(k,y,z) = —2° (5.11)

o |k| — k2 + i
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By inverse transform the potential is

fo'e) _ ik & \k|z

1 . Palk)e

O(z,y,2) = _/ dk et —28 (2) —
21 | 2 lk| — K+ %

The Fourier integral can be split into two:

1 . Da(k)e
P - dk ikx P i
(x,y;Z) o . & %|k|_k2+%
O A Al
+ o ¢ 9 |k| — k2 + ik
—00 U?2 U

In the first integral |k| = k. In the second |k| = —k, hence

1 & . _iﬁa k ekz
O(z,y,2) = — dk e'** 7 v (2 ) —
27 0 mk —k + Nid
+ i ’ dk kT _lf_(k]]ja(k)eikz
21 o — Sk — k2 + &k

Let us replace k£ by -k in the second integral so that
o0 _ ik s k
S(r,y,2) = — [ di e Db
Y 21 Jo ok — k2 + i
+ i > dk e~ ;_kaﬁa(k)ekz
21 Jo Lk —k? — ik

- 00 ~ kz
- / dk eikxm
2mpU J, k—4 — &

U U
- v /00 dk efikx pa(k)ekZ.
2mpU |/, k— 3+ %

Use has been made of the fact p,(k) given by (5.7) is even in k.

5.2 Asymptotic solution in the far wake

For brevity we shall write (5.15) as

O(z,y,2) = P + Py

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

where ®; and ®, represent the first and second integrals respectively. Let us examine

each integral in turn in the complex k plane. The first integrand has a pole in the
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Figure by MIT OCW.

Figure 13: Contours in the complex k plane: (a) for ®; and z < 0.,(b) for 5 and = < 0,
(c) for @1 and = > 0, (d) for &3 and z > 0.

first quadrant; the second has one in the fourth quadrant. If no Rayleigh damping
were assumed, both poles would be on the path of integration, rendering the integrals
undefined, unless the radiation condition is added, see §3.

Consider the first x < 0 i.e., ahead of the ship. We replace the integral path for &,
by the closed clockwise contour in the fourth quadrant, as shown in Figure 5.2-a. The
contour consists of the orginal path, hence ®,, an integral along a circular arc C_ with
very large radius, and the positive imaginary axis, all with the same integrand,

7 o0 . ;Ea(k)ekz i / /0 " pa(k)ekz
di e 22— P dke* 2277 (517
A LS R (AR ML - O

T U2 U U?

Note that the contour is closed in the fourth quadrant where k; < 0 to ensure convergence

for x < 0, since
eikl‘ — eikrme—kia) (518)

Let us show first that the integral along the imaginary axis has only local effects,

0 ) Da k kz
I:/'MM%%%iE (5.19)
—100 2 U
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Let k = —iK where Kb is real and positive, we get

0 —Kx ,—i1Kzx
I:i/ drkS ¢ ( iK) (5.20)
ZK —+ m

o0

This integral clearly diminishes to zero as + — oco. Next, the integral along the arc C'_
vanishes by Jordan’s lemma. Since no pole is inside the contour, the contour integral
is zero by Cauchy’s residue theorem. Hence ®; has only local effect and diminishes to
zero as far ahead of the moving pressure.

Similarly for ®, we choose a closed contour in the first quadrant where k; > 0 as in
Figure 5.2-b, since

o=tk _ p=ikrz iz (5.21)

Again there is no pole inside the contour, hence the contour integral vanishes. Since
nothing comes from the circular arc, and the integral along the imaginary axis has
only local effect, ®5 has only local effects also, In summary, far ahead of the moving
disturance, wave motion (& = ®; + ®,) is negligible.

Let us now consider x > 0, i.e., the wake. For ®; the closed contour must now be in
the first quadrant where there is the pole at

g
==+ = .22
k U2+U (5.22)

see Figure 5.2-c. By Cauchy’s residue theorem the (counter-clockwise) contour integral

is

i o Pa(k)e™ L g2 (92 g
dk eibe Pl L e p <_) 92/U 5.23
27er7{ e v/ o2

By repeating earlier reasoning, integrals along the arc and along the positive imarginary

axis do not matter in the far field, hence

D, = — 1 PO zgac/U2 (gL/U2)2€gz/U2 (524)

oU T
On the other hand, for ®; the closed contour must now be in the fourth quadrant where
there is the pole at .
g i€
g = 5.25
== (5.25)
see Figure 5.2-d. By Cauchy’s residue theorem the contour integral in the clockwise

direction is

; ) o k kz 1 ) _
o 7{ ak ek PR 1 ey, (Fz) "™ (5.26)



Again, integrals along the arc and along the positive imarginary axis do not matter in

the far field, hence
B, rv 1 O g2 (g0 gz 0 (5.27)

UV

Finally in the far wake,

2 P 2)2 2
=Py + By~ —— 2 cos(gx/U?)e WLV 92U (5.28)
pU /T

Uvm

Thus one sees a train of sinusoidal surface waves of length U?/g following the distur-

bance. The wave amplitude is

Pye” WLIT?)? (5.29)

which is large if the pressure variation is sharp, and small if it is flat.

We leave it as an exercise to derive the wave drag.

6 The physics of Kelvin’s ship-wave pattern

Refs: Explansions are due to LIGHTHILL, First ONR SYMPOSIUM on Naval Hydro-
dynamics (19597).
Material here is borrowed from the lecture notes by T. Y. Wu, Caltech.
Mathematical details can be found in Stoker: Water Waves 1957.

The action of the ship’s propeller

Has a thrust pattern

To which the ship reacts by moving forward,
Which also results secondarily,

In the ship’s bow elevated waves,

And its depressed transverse stern wave,
Which wave disturbances of the water

Are separate from the propeller’s thrust waves.



R.Buckminster Fuller, Intuition- Metaphysical Mosaic. 1972.

Anyone flying over a moving ship must be intrigued by the beautiful pattern in the
ship’s wake. The theory behind it was first completed by Lord Kelvin, who invented
the method of stationary phase for the task. Here we shall give a physical/geometrical
derivation of the key results

Consider first two coordinate systems. The first r = (z,y, 2) moves with ship at the
uniform horizontal velocity U. The second r’ = (2, 4/, 2) is fixed on earth so that water
is stationary while the ship passes by at the velocity U. The two systems are related by
the Galilean transformation,

r'=r+ Ut (6.1)
A train of simple harmonic progressive wave
C=R{Aexpli(k -1’ — wi)|} (6.2)
in the moving coordinates should be expressed as

¢ = R{Aexp[ik- (r — Ut) — iwt]} = R{Aexplik - r —i(w — k.U)t|}
= R{Aexplik-r —iot]} (6.3)

in the stationary coordinates. Therefore the apparent frequency in the moving coordi-

nates is

c=w—-k-U (6.4)

The last result is essentially the famous Doppler’s effect. To a stationary observer, the
whistle from an approaching train has an increasingly high pitch, while that from a
leaving train has a decreasing pitch.

If a ship moves in very deep water at the constant speed —U in stationary water,
then relative to the ship, water appears to be washed downstream at the velocity U.
A stationary wave pattern is formed in the wake. Once disturbed by the passing ship,
a fluid parcel on the ship’s path radiates waves in all directions and at all frequencies.
Wave of frequency w spreads out radially at the phase speed of ¢ = g/w according to
the dispersion relation. Only those parts of the waves that are stationary relative to the

ship will form the ship wake, and they must satisfy the condition
o=0, (6.5)
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Figure 14: Waves radiated from disturbed fluid parcel

ie.,

w k
~k-U —=>.U 6.6
W ,0r c¢ I I ( )

Referring to figure 14, let O, (z = 0) represents the point ship in the ship-bound
coordinates. The current is in the positive x direction. Any point x; is occupied by
a fluid parcel @); which was disturbed directly by the passing ship at time ¢; = z;/U
earlier. This disurbed parcel radiates waves of all frequencies radially. The phase of
wave at the frequency w reaches the circle of radius ct; where c=¢/w by the deep water
dispersion relation. Along the entire circle however only the point that satisfies (6.6)
can contribute to the stationary wave pattern, as marked by P. Since OQ; = x1 = Uty
Q1P = ct; and OP = Uty - k/k, where k is in the direction of Q;P. It follows that
AOPQ, is a right triangle, and P lies on a semi circle with diameter OQ);. Accounting
for the radiated waves of all frequencies, hence all ¢, every point on the semi circle
can be a part of the stationary wave phase formed by signals emitted from );. Now
this argument must be rectified because wave energy only travels at the group velocity
which is just half of the phase velocity in deep water. Therefore stationary crests due
to signals from @); can only lie on the semi-circle with the diameter 010 = OQ1/2.
Thus P, instead of P is one of the points forming a stationary crest in the ship’s wake,
as shown in figure 14.

Any other fluid parcel (05 at x5 must have been disturbed by the passing ship at time
to = x9/U earlier. Its radiated signals contribute to the stationary wave pattern only
along the semi circle with diameter OyQy = OQ/2. Combining the effects of all fluid

parcels along the +z axis, stationary wave pattern must be confined inside the wedge
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Figure 15: Wedge angle of the ship wake

Figure 16: Geometrical relation to find Points of dependence

which envelopes all these semi circles. The half apex angle 3, of the wedge, which defines

the wake, is given by

Ut/4
sin 3, = # =1/3, (6.7)

hence 3, = sin™' 1/3 = 19.5°, see figure 15.

Now any point P inside the wedge is on two semicircles tangent to the boundary
of the wedge, i.e., there are two segments of the wave crests intersecting at P: one
perpendicular to P, and one to P(Q),, as shown in figure 15.

Another way of picturing this is to examine an interior ray from the ship. In figure
(16), draw a semi circle with the diameter O'Q) = OQ)/2, then at the two intersections Py
and P, with the ray are the two segments of the stationary wave crests. In other words,
signals originated from () contribute to the stationary wave pattern only at the two
points P, and P,, as shown in figure 16. Point ) can be called the point of dependence
for points P, and P, on the crests.

For any interior point P there is a graphical way of finding the two points of depen-
dence ), and (. Referring to figure 16, AO'QP; and AO'Q P, are both right triangles.
Draw O M || QP and Oy M, || QP, where M; and M, lie on the ray inclined at the an-
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Figure 17: Points of dependence

gle . it is clear that OM; = OP;/2 and OM, = OP,/2, and AM,0'P, and AM,O'P,
are both right triangles. Hence O’ lies on two semi circles with diameters M;P; and
M5 Ps.

We now reverse the process, as shown in figure 17. For any point P on an interior
ray, let us mark the mid point M of OP and draw a semi circle with diameter M P.
The semi circle intersects the x axis at two points S; and S;. We then draw from P two
lines parallel to MS; and M S,, the two points of intersection )1 an ()3 on the x axis

are just the two points of dependence.

Let ZPQlO = ZMSIO = 91 and ZPQQO = ZMSQO = 92. then

PS; PS; .
an(¢; + 3) S, PO an i
hence
2 tan 0, — tanf; + tan 3

1 — tan6; tan 3
which is a quadratic equation for #;, with two solutions:

tan 6 1+ +/1 — 8tan?
R an” (6.8)
tan 6, 4 tan (3
They are real and distinct if
1 —8tan®*3 >0 (6.9)

These two angles define the local stationary wave crests crossing P, and they must

be perpendicular to PQ; and PQ,. There are no solutions if 1 — 8tan? 3 < 0, which

corresponds to sin 5 > 1/3 or § > 19.5°, i.e., outside the wake. At the boundary of the

wake, 4 =19,5° and tan § = m, the two angles are equal

1 V2
2

91 = 92 = tan = 350161. (610)
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Figure by MIT OCW.

Figure 18: Diverging and transverse waves in a ship wake

By connecting these segments at all points in the wedge, one finds two systems of wave
crests, the diverging waves and the transverse waves, as shown in figure div-trans.

A beautiful photograph is shown in Figure 19

Knowing that waves are confined in a wedge, we can estimate the behavior of the
wave amplitude by balancing in order of magnitude work done by the wave drag R and

the steady rate of energy flux
RU = (Ec,)r ~ (|A¢y)r (6.11)

hence

A~opt/? (6.12)

This estimate is valid throughout the wedge except near the outer boundaries, where
A~y i3 (6.13)

by a more refined analysis (Stoker, 1957, or Wehausen & Laitone, 1960).
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" Photograph removed due to copyright restrictions."

Figure 19: Ships in a straight course. From Stoker, 1957.p. 280.
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7 Three-dimensional analysis of Kelvin’s ship wave

References: J. N. Newman: Marine Hydrodynamics

J. J. Stoker: Water Wauves,

J. V. Wehausen and E. V. Laitone Surface Waves in Handbuch der Physik: Band IX.
Springer.

T Y. Wu Lecture Notes on Water Waves, Calif. Inst. Tech.

7.1 Solution by Fourier transform

Define the double Fourier transform:

(o, 3, 2) // eIV (1 y, 2)dady (7.14)

and its inverse:

1 > I
O(z,y,2) = yos, / / TP (o, B, 2)dad (7.15)
™ — 00
Applying the Fourier Transform to Laplace’s equation and the boundary conditions we
get
P,, — k*® =0, where k=+\a2+032, 2<0 (7.16)
_ Ua? U
3, - (—O‘ - iea) b= —ia—p, (7.17)
g Pg
The solution is easily found to be
U iap, e
s (7.18)
Py ga — e — k
Formally the inverse transform is
iap, €
O (x,, // dod ew‘“"“ﬁy 7.19
(2,9, 2 e g ngo‘ —jea — k ( )
The Fourier transform of the kinematic free surface condition is
iOzUC_(OZ, ﬁ) = (i)z (CY, Ba 0) (720)
Hence the displacement is
C(ay / / dadp ¢evtivy____Pa (7.21)
47T2 Pg U L —jea — k
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We shall take a Gaussian pressure distribution for illustration,

Pa = Poe@ H¥)/AL7 (7.22)
The Fourier transform is
PyL? 5,
Pa = ——M'L (7.23)
T

From here on we shall discuss the free surface displacment only,

_PI* 1 fe=k*1?
T,y) = dod3 e +iPy 7.24
N Py 42 // b U L —jea — k (7.24)

7.2 Asymptotic analysis of the wake

If we let
xr=rcosf, y=rsinf; o ==kcosy, =ksin (7.25)
then
ax + By = krcos(6 — 1) (7.26)
(7.24) becomes
PL* 1 [ / fee L
z, d dk e ikr cos(¢—0) .
C( y) pgT 47T2 ,QZ} U2k cos? ¢ iGCOS’g/)—l
PL?>g 1 [* k R
i_ / dk e tkr cos(1p—0) . (727)
pgm U? 4% [, cos%/) (k— 9 _ _ieg )
U2 cos? 1) U2 cos 1

We now evaluate the k—integral in the complex plane of k = |k|e’”. The integrand has

a simple pole at '
g 1eg
k= +
U?cos?y  U?cos

which is slightly above the real axis. Let us use Cauchy residue theorem by choosing a

(7.28)

closed contour in the complex & plane. Since
ikr cos(yp — 0) = (i|k|r coso — |k|rsino) cos(y) — 0) (7.29)

For 0 < |1 — 0] < 7/2 we must choose 0 < o < /2 for the Fourier integral to converge.
Thus we close the counter-wise contour in the first quadrant by adding a large circular

arc connecting the ends of the real and imaginary axes k ~ oo and k ~ ioo, and then
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the positive imaginary k axis, as shown in Figure 5.2. The contour integral in k is equal

to the residue at the simple pole by Cauchy’s theorem,

{/ / / }dk 27ig o | < gL )2 ox [ gr cos(¢ — 9)]
~ UZcost 0 P U? cos? 1 P12 ™ cos? o |
(7.30)

The limit of € = 0 has been taken after calculating the residue. It can be shown that

the line integral along the imaginary axis has only local effects and dies out quickly for
large r. The line integral along the circular arc also vanishes in the limit of large |k|
by Jordan’s lemma. Hence the residue is the only important term representing the line

integral along the real k axis. Subsitituting this result in (7.27), we get

gL 2 gr cos(1p — 0)
A I

For /2 < |¢p — 0] < m we must choose —7/2 < o < 0 for the Fourier integral to

i B g [ dy
ex
22 pg U? cost P

((w,2) ~

converge. In other words, we take a clock-wise countour closed by a circular arc in the
fourth quadrant. The pole is now outside the contour and the residue is zero. Hence
the k integral is negligible.

In the far wake %5 > 1, we apply the method of stationary phase to (7.31). Let the

phase function be

cos(y) — )
F =7 77 .32
=" (7.52)
Its derivative is
dF sin(¢) — 6) sin v cos(y) — )
F S 2
w(¥,9) di) cos? ) cos3 1)
_ cos(yp —0)
= ey [— tan(¢ — 0) + 2 tan 9]
= F[—tan(¢ —0) + 2 tan ] (7.33)
The points of stationary phase are the roots of
—tan(y — 0) + 2tanty =0 (7.34)
or
2tan ftan® ¢ + tan) 4 tand = 0 (7.35)
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Note that tan # = y/x represents the ray where an observer sits. Because of symmetry
with respect to the x axis we need to consider x > 0,y > 0 only. There are two negative
solutions
tanty | -1F 1—8(?//5”)2
tan vy a dy/x

(7.36)

if (z,y) is inside the half-wedge tan @ = y/z < 1/4/8, i.e., # < 19.3°. Outside the wedge
no stationary phase point exists.

By definition (7.26),

tan1) = g (7.37)

gives the direction of the local wavenumber vector. For a point along the edge of the

wake, y/z = 1//8,

1
tan 1/)1 = tan 1/)2 = —75, or, 1/)1 == 1/)2 = —350161. (738)
For a point along the ray y/z ~ 0,
1
tan 1, ~ e ~ —00, (7.39)

hence ¢, &~ —7, and
L—1-8(y/=)?  4(y/x) _
t = — ~— =—-= 7.40
an 17/)2 4y/f17 4y/x .’L', ( )

hence ¥y ~ —0. Wayve crests corresponding to ; are locally parallel to the the ship’s

path (the z axis). These are the diverging waves. On the other hand, wave crests
corresponding to ¢, are locally perpendicular to the ship’s path; they are the transverse

waves. The ranges of tan ) are

Diverging wave : ——— > tan; > —o0,

V2
1

Transverse wave : 0> tanty < ———= (7.41)

V2

To apply the formula of the stationary phase method we calculate Fy,, (1)) from (7.33)

at the stationary points:
Fyy () = Fy|—tan(y, — 0) + 2tan e, | + F[— secQ(L/)m —0)+2 sec? Um], m=1,2.

51



At the stationary points the first term vanishes. We rewrite the second term as
Fyy(thm) = F [1 — tan®* (¢, — 0) + 2tan® ¢y, | = F [1 — 2 tan® 1)y, | (7.42)

Use has been made of (7.34). It is clear from (7.41) that Fy,(¢1) < 0 for the diverging
wave and Fy,(12) > 0 for the transverse wave. It follows that the free surface elevation

in the wake is dominated by

C(,y)

2
(9L
i PL? g o2 \'/? eXp{ (U¢)]

— exp |i
212 pg U2 | \grlFyy(v)] cost ¢ P72 cos?

2
(9L
< 2rl? )1/2‘”“’{ (Uw)} [,grcos(wQ—G) m]
exp |ios ———— + —

gr|Fyy(12)] cost 1)y N cos? 1y 4

Thus the two wave systems are out of phase bu 7/2. Each wave decays with distance

as 1/y/r. The wave length of each wave system is

21U cos U,
g

Am (7.44)

For the diverging waves, cost; ~ 0 along the centerline, where the wave length is the
shortest and increases outwards.
Note that near the edge of the wake, Fi, = 0. The present approximation breaks

down. A better approximation can be made (see Lamb, Stoker).
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8 Two-dimensional Internal waves In a continu-

ously stratified fluid

[References]:

C.S. Yih, 1965, Dynamics of Inhomogeneous Fluids, MacMillan.

O. M. Phillips, 1977, Dynamics of the Upper Ocean, Cambridge U. Press.

P. G. Baines, 1995, Topographical Effects in Stratified Flows Cambridge U. Press.

M. J. Lighthill 1978, Waves in Fluids , Cambridge University Press.

Due to seasonal changes of temperature, the density of water or atmosphere can have
significant variations in the vertical direction. Variation of salt content can also lead to
density stratification. Freshwater from rivers can rest on top of the sea water. Due to
the small diffusivity, the density contrast remains for a long time.

Consider a calm and stratified fluid with a static density distribution p,(z) which
decreases with height (z). If a fluid parcel is moved from the level z upward to z + , it
is surrounded by lighter fluid of density p(z + dz). The upward buoyancy force per unit
volume is

dp

ooz +0) = () = 97L¢

and is negative. Applying Newton’s law to the fluid parcel of unit volume

¢ dp
PW = 9@(
or
% +N?¢C=0 (8.1)
where 12
- (42)

is called the Brunt-Véisald frequency. This elementary consideration shows that once
a fluid is displaced from its equilibrium position, gravity and density gradient provides
restoring force to enable oscillations. In general there must be horizontal nonunifomities,
hence waves are possible.

We start from the exact equations for an inviscid and incompressible fluid with

variable density.
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For an incompressible fluid the density remains constant as the fluid moves,
pe+q-Vp=20 (8.3)

where q = (u,w) is the velocity vector in the vertical plane of (z,z). Conservation of
mass requires that

V.q=0 (8.4)
The law of momentum conservation reads
plas+q-Vq) = —=Vp — pge, (8.5)

and e, is the unit vector in the upward vertical direction.

8.1 Linearized equations
Consider small disturbances
p=p+p, p=p2)+p, ¢= " u) (8.6)
with
p>p, p>p (8.7)

and u',v',w’ are small. Linearizing by omitting quadratically small terms associated

with the fluid motion, we get
Jdp

ul +w, =0 (8.9)
puy = —p, (8.10)
pwy = —p, — D, — gp — gp' (8.11)

In the last equation the static part must be in balance

0=—-p. — gp, (8.12)

hence

B(z) = /0 " 5(2)de. (8.13)



The remaining dynamically part must satisfy
pwy = —p, — gp/ (8.14)

Upon eliminating p’ from the two momentum equations we get

dp _
EUQ +p(u, — wy)e = gp,, (8.15)

Eliminating p’ from (8.8) and (8.15) we get
dp _ dp
%U;t +p(u, — wy)u = 9Py = _gaw!p (8.16)

Let us introduce the disturbance stream function :

u =1, w=-—1, (8.17)
It follows from (8.16) that
_ dp
P (@Z)m: + z/)zz)tt = % (gd}:m - ¢ztt) (818)

by virture of Eqns. (8.8) and (8.17). Note that

g dp (8.19)

N=,/-2
p dz

is the Brunt-Viisild frequency. In the ocean, density gradient is usually very small (
N ~ 5x 1073 rad/sec). Hence p can be approximated by a constant reference value, say,
po = p(0) in (8.10) and (8.14) without much error in the inertia terms. However density
variation must be kept in the buoyancy term associated with gravity, which is the only
restoring force responsible for wave motion. This is called the Boussinesq approzimation

and amounts to taking p to be constant in (Eq:17.1) only. With it (8.18) reduces to
(Y + ¥22)y + N2(2) Yoy = 0. (8.20)
Note that because of linearity, v’ and w’ satisfy Eqn. (8.20) also, i.e.,
(Why + W)y + N wiy, =0 (8:21)
etc.
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8.2 Linearized Boundary conditions on the sea surface

Dynamic boundary condition : Total pressure is equal to the atmospheric pressure

P+p),_=0. (8.22)

On the free surface z = (¢, we have

¢
P —g / p(0)dz = —gp(0)C

Therefore,
—pgC+p' =0, 2=0, (8.23)
implying
—09Caxt = — Doy, 2 =0. (8.24)
Kinematic condition :
G=w, z=0. (8.25)

The left-hand-side of (8.24) can be written as

—D09Cext = —Pg W,

Using 8.10, the right-hand-side of 8.24 may be written,

Dot = Plyy = —PWoy
hence
why, —gw., =0, on z=0. (8.26)
Since w' = —1),, 1 also satisfies the same boundary condition
Vot — GUpe = 0, on 2z =0. (8.27)
On the seabed, z = —h(x) the normal velocity vanishes. For a horizontal bottom we
have
Y(z,—h,t) =0. (8.28)
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Figure 20: Typical variation of Brunt-Vaiisila frequency in the ocean. From O. M.

Phillips, 1977

9 Internal waves modes for finite N
Consider a horizontally propagating wave beneath the sea surface. Let
w — F(Z) e:l:ikare—iwt.

From Eqn. (8.21),

d*F
2 2 2 2 _
or 2 2 2
EF  N?—w?
dz2+ 2 kK°F =0 2z<0.

On the (horizontal) sea bottom

From Eqn. (8.27),
dF k2
iz

Equations (9.2), (9.3) and (9.4) constitute an eigenvalue condition.

F=0 z=0.

(9.1)

(9.4)

If w? < N2 then F is oscillatory in z within the thermocline. Away from the

thermocline, w? > N?, W must decay exponentially. Therefore, the thermocline is a
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waveguide within which waves are trapped. Waves that have the greatest amplitude
beneath the free surface is called internal waves.

Since for internal waves, w < N while N is very small in oceans, oceanic internal
waves have very low natural frequencies. For most wavelengths of practical interests
w? < gk so that

F=0 onz=0. (9.5)

This is called the rigid lid approximation, which will be adopted in the following.
With the rigid-lid approximation, if N=constant (if the total depth is relataively

small compared to the vertical scale of stratification, the solution for F' is

N2 2
F = Asin (k(z + h)7w> (9.6)
w
where
NZ 2
khTw —nm, n=1,2,3... 9.7)

This is an eigen-value condition. For a fixed wave number £, it gives the eigen-frequencies,

oy (9.8)

2
L+ (%)

For a given wavenumber k, this dispersion relation gives the eigen-frequency w,. For a

given frequency w, it gives the eigen-wavenumbers £k,

nm w
g, =T Y 9.9
h /N2 — 2 (9:9)

For a simple lake with vertical banks and length L, 0 < x < L, we must impose the

conditions :
w' =0, hence v =0, 2=0,L (9.10)
The solution is
N2 _ 2
Y = Asinkyx exp(—iwpmt) sin |k, (z + h)—"| . (9.11)
wnm
with
knL =mm, m=1,2,3, ... (9.12)
The eigen-frequencies are:
N
Wi = ———— (9.13)
L+ (35)



10 Internal waves in a vertically unbounded fluid

Consider N = constant (which is good if attention is limited to a small vertical extent),
and denote by (cv, 8) the (z, z) components of the wave number vector & Let the solution

be a plane wave in the vertical plane

¥ = 1y ei(a:v-l—ﬁz—wt)

Then ,
2 _ a2 @
a? + 3?2
or
w:iN% (10.1)
k= a®+ (10.2)

This is the dispersion relation. Note that is

% = +cost (10.3)

where @' is the inclination of k with repect to the x axis. For a given frequency, there
are two possible signs for «. Since the above relation is also even in 3, there are four
possible inclinations for the wave crests and troughs with respect to the horizon; the

angle of inclination is

0’| = cos™' = 10.4
0] = cos (10.4)
For w > N, there is no wave.
To under the physics better we note first that the phase velocity is
c=9k_ 10 p (10.5)
T kE R '
while the group velocity components are
ow 1 o« N a? N
Cpp = —=4N|-—-=S—)=+"—(1-—= | =+~ 10.6
g O <k k? k) k < k2> k3ﬂ (106)
Ow af
: = — =F—~. 10.
C, 95 13 (10.7)
Thus
5 B (B —«
=4+N—=|—, —|. 10.
Cg k2 k? k ( 0 8)

59



Figure 21: Phase and group velocities

Two conclusions can be drawn. First, the group velocity is perpendicular to the phase

velocity,

—

c,-C=o. (10.9)
Second,

N = N N
C+ Cg = iﬁ (a2 + 62v0) - iﬁ (k-) 0) (10‘10)

The vector sum of C and 59 is a horizontal vector, as shown by any of the sketches in
Figure 17. Note that when the phase velocity as an upward component, the group veloc-
ity has a downward component, and vice versa. Now let us consider energy transport.

from (8.10) we get
_p; — ﬁwzt — ﬁwﬁwoei(aerﬂszt)

hence the dynamic pressure is
= iwﬁgwoei(a”ﬂZ”t) (10.11)
The fluid velocity is easily calculated

§ = (u,0") = (o, —ta) = iB(B, —a)h,e" @ F0) (10.12)
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The averaged rate of energy transport is therefore

B = 71 (5, -a) (10.13)
which is in the same direction of the group velocity.

Energy must radiate outward from the oscillating source, hence the group velocity
vectors must all be outward. Since there are 4 directions for k. There are four radial
beams parallel to ¢, in four quadrants, forming St. Andrews Cross. The crests (phase
lines) in the beam in the first quadrant must be in the south-easterly direction. Similarly
the crests in all four beams must be outward and toward the horizontal axis. Let 6 be
the inclination of a beam (i.e., (C,) with respect to the y axis, then = 7/2 — ¢’ in the

first quadrant. The dispersion relation can be written as

% = +sind (10.14)

where 6 is the inclination of a beam and not of the wavenumber vector.

Movie records indeed confirm these predictions. Within each of the four beams which
have widths comparable to the cylinder diameter, only one or two wave lengths can be
seen.

This unique property of anisotropy has been verified in dramatic experiments by
Mowbray and Stevenson. By oscillating a long cylinder at various frequencies verti-
cally in a stratified fluid, equal phase lines are only found along four beams forming St
Andrew’s Cross, see Figure (22) for w/N = 0.7, 0.9 and 1.11. It can be verified that
angles are || = 45° for w/N = 0.7, and |f| = 64° for w/N = 0.9. In the last photo,
w/N = 1.11. There is no wave. These results are all in accord with the condition (10.4).

Comparison between measured and predicted angles is plotted in Figure (23) for a

wide range of w/N

11 Reflection of internal waves at a plane boundary

For another interesting feature, consider the reflection of an internal wave from a slope.

Recall that 0" = £cos ' £, i.e., for a fixed frequency there are only two allowable

w
N

directions with respect to the horizon. Relative to the sloping bottom inclined at #, the
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Figure 22: St Andrew’s Cross in a stratified fluid. Top: w/N = 0.7; bottom left
w/N = 0.9; bottom right: w/N = 1.11. From Mowbray & Rarity, 1965, JEM
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Figure 23: Comparison of measured and predicted angles of internal-wave beams. w/N

vs. sinf. From Mowbray & Rarity, 1965, JEM
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inclinations of the incident and reflected waves must be different, and are respectively
0 + 0, and 0" — 0, see Figure 24.

Let & be along, and n be normal to the slope. Since the slope must be a streamline,

¥; + 1, must vanish along 7 = 0 and be proportional to ¢/®¢~“: the total stream

function must be of the form
" pilkig—wt) | " cilkE—wt) o gin et

In particular the wavenumber component along the slope must be equal,

Consider first 6, > ¢, as shown in the left diagram in Figure(24). We must have
kD cos(0 + 6,) = k™ cos(6' — 6,),

which implies first that
k@ £ k0, (11.1)

The incident wave and the reflected wave have different wavelengths! Furthermore, the
reflected wave is directed up-slope.If, however, 6, > @', as shown in the right diagram in

Figure(24), then
kD cos(0 + 6,) = k™ cos(m — (6, — 0")) = =k cos(6, — 6'),

The reflected wave is directed down-slope instead (Phillips, 1977).
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Figure 24: Internal wave reflected by in inclined surface. Top: 6, < 6’. Bottom: 6, > 6.
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