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CHAPTER THREE

TWO DIMENSIONAL WAVES

1 Reflection and tranmission of sound at an inter-

face

Reference : L. M. Brekhovskikh and O. A. Godin: Acoustics of Layered Media I.

Springer.§.2.2.
The governing equation for sound in a honmogeneous fluid is given by (7.31) and

(7.32) in Chapter One. In term of the the veloctiy potential defined by

u = ∇φ (1.1)

it is
1

c2

∂2φ

∂t2
= ∇2φ (1.2)

where c denotes the sound speed. Recall that the fluid pressure

p = −ρ∂φ/∂t (1.3)

also satisfies the same equation.

1.1 Plane wave in Infinite space

Let us first consider a plane sinusoidal wave in three dimensional space

φ(x, t) = φoe
i(k·x−ωt) = φoe

i(kn·x−ωt) (1.4)

Here the phase function is

θ(x, t) = k · x− ωt (1.5)
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The equation of constant phase θ(x, t) = θo describes a moving surface. The wave

number vector k = kn is defined to be

k = kn = ∇θ (1.6)

hence is orthogonal to the surface of constant phase, and represens the direction of wave

propagation. The frequency is defined to be

ω = −∂θ

∂t
(1.7)

Is (1.4) a solution? Let us check (1.2).

∇φ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
φ = ikφ

∇2φ = ∇ · ∇φ = ik · ikφ = −k2φ

∂2φ

∂t2
= −ω2φ

Hence (1.2) is satisfied if

ω = kc. (1.8)

Sound in an infinite space is non-dispersive.

1.2 Two-dimensional reflection from a plane interface

REfering to figure ??, let us cnsider two semi-infinite fluids separated by the plane

interface along z = 0. The lower fluid is distinguished from the upper fluid by the

subscript ”1”. The densities and sound speeds in the upper and lower fluids are ρ, c and

ρ1, c1 respectively. Let a plane incident wave arive from z > 0 at the incident angle of

θ with respect to the z axis, the sound pressure and the velocity potential are

pi = P0 exp[ik(x sin θ − z cos θ)] (1.9)

The velocity potential is

φi = −iP0

ωρ
exp[ik(x sin θ − z cos θ] (1.10)

The indient wave number vector is

ki = (ki
x, k

i
z) = k(sin θ,− cos θ) (1.11)
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Figure 1: Plane wave incident towards the interface of two fluids.

The motion is confined in the x, z plane.

On the same (incidence) side of the interface we have the reflected wave

pr = R exp[ik(x sin θ + z cos θ)] (1.12)

where R denotes the reflection coefficient. The wavenumber vector is

kr = (kr
x, k

r
z) = k(sin θ, cos θ) (1.13)

The total pressure and potential are

p = P0 {exp[ik(x sin θ − z cos θ)] +R exp[ik(x sin θ + z cos θ)]} (1.14)

φ = −iP0

ρω
{exp[ik(x sin θ − z cos θ)] +R exp[ik(x sin θ + z cos θ)]} (1.15)

In the lower medium z < 0 the transmitted wave has the pressure

p1 = TP0 exp[ik1(x sin θ1 − z cos θ1)] (1.16)

where T is the transmission coefficient, and the potential

φ1 = − iP0

ρ1ω
T exp[ik1(x sin θ1 − z cos θ1)] (1.17)

Along the interface z = 0 we require the continutiy of pressure and normal velocity,

i.e.,

p = p1, z = 0 (1.18)

ki
kr

k1

θ

θ1

Figure by MIT OCW.
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and

w = w1, z = 0, (1.19)

Applying (1.18), we get

P0

{
eikx sin θ +Reikx sin θ

}
= TP0e

ik1x sin θ1 , −∞ < x < ∞.

Clearly we must have

k sin θ = k1 sin θ1 (1.20)

or,
sin θ

c
=
sin θ1

c1

(1.21)

This is just Snell’s law. With (1.20), we must have

1 +R = T (1.22)

Applying (1.19), we have

iP0

ρω

[−k cos θeik sin θ +Rk cos θeik sin θ
]
=

iP0

ρ1ω

[−k1 cos θ1Te
ik1 sin θ1

]
which implies

1−R =
ρk1 cos θ1

ρ1k cos θ
T (1.23)

Eqs (1.22) and (1.23) can be solved to give

T =
2ρ1k cos θ

ρk1 cos θ1 + ρ1k cos θ
(1.24)

R =
ρ1k cos θ − ρk1 cos θ1

ρ1k cos θ + ρk1 cos θ1

(1.25)

Alternatively, we have

T =
2ρ1c1 cos θ

ρc cos θ1 + ρ1c1 cos θ
(1.26)

R =
ρ1c1 cos θ − ρc cos θ1

ρ1c1 cos θ + ρc cos θ1

(1.27)

Let

m =
ρ1

ρ
, n =

c

c1

(1.28)
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where the ratio of sound speeds n is called the index of refraction. We get after using

Snell’s law that

R =
m cos θ − n cos θ1

m cos θ + n cos θ1

=
m cos θ − n

√
1− sin2 θ

n2

m cos θ + n
√
1− sin2 θ

n2

(1.29)

The transmission coefficient is

T = 1 +R =
2m cos θ

m cos θ + n
√
1− sin2 θ

n2

(1.30)

We now examine the physics.

1. If n = c/c1 > 1, the wave enter from a faster to a slower medium, then θ > θ1 and

sin θ/n < 1 always. R is real. In particular, for normal incidence θ = θ1 = 0,

R =
m− n

m+ n
(1.31)

is real. If m > n > 1, i.e., ρ1/ρ > c/c1 > 1, then R is positive. If n > m > 1 then

R is negative. As θ increases, θ1 also increases. R decreases until at θ = π/2, so

that

R = −n

n
= −1 (1.32)

Hence R lies on a segment of the real axis as shown in Figur 1.a. or Figure 1.b.

Note that there is no reflection R = 0 at the special incidence angle θ = θB, called

the Brewster angle:

sin θB =
n√

1−m2
(1.33)

2. If however n < 1, i.e., the wave enters from a slower medium to a faster medium,

then θ1 > θ. for sufficiently small θ, R is real. When θ increases to a critical value

δ, defined by

sin δ = n (1.34)

sin θ1 = 1 so that θ1 becomes π/2, and

R =
m cos δ

m cos δ
= 1

Below this critical angle (0 < θ < δ), R is real. In particular, when θ = 0, (1.31)

applies. See Figure 2.c for m > n and in 2.d. for m < n.
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Figure 2: Complex reflection coefficient. From Brekhovskikh and Godin §.2.2.

When θ > δ, the square roots above become imaginary. We must then take

cos θ1 =

√
1− sin2 θ

n2
= i

√
sin2 θ

n2
− 1 (1.35)

The reflection coefficient is now complex

R =
m cos θ − in

√
sin2 θ

n2 − 1

m cos θ + in
√

sin2 θ
n2 − 1

(1.36)

with |R| = 1, implying complete reflection. As a check the transmitted wave is

now given by

pt = T exp

[
k1

(
ix sin θ1 + z

√
sin2 θ/n2 − 1

)]
(1.37)

so the amplitude attenuates exponentially in z as z → −∞. Thus the wave train

cannot penetrate much below the interface. The dependence of R on various

parameters is best displayed in the complex plane R = �R + i�R. It is clear

from (1.36 ) that �R < 0 so that R falls on the half circle in the lower half of the

complex plane as shown in Figures 2.c and 2.d.
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2 Equations for elastic waves

Refs:

Graff: Wave Motion in Elastic Solids

Aki & Richards Quantitative Seismology, V. 1.

Achenbach. Wave Propagation in Elastic Solids

Let the displacement vector at a point xj and time t be denoted by ui(xj, t), then

Newton’s law applied to an material element of unit volume reads

ρ
∂2ui

∂t2
=

∂τij

∂xj

(2.1)

where τij is the stress tensor. We have neglected body force such as gravity. For a

homogeneous and isotropic elastic solid, we have the following relation between stress

and strain

τij = λekkδij + 2µeij (2.2)

where λ and µ are Lamé constants and

eij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(2.3)

is the strain tensor. Eq. (2.2) can be inverted to give

eij =
1 + ν

E
τij − ν

E
τkkδij (2.4)

where

E =
µ(3λ+ µ)

λ+ µ
(2.5)

is Young’s modulus and

ν =
λ

2(λ+ µ)
. (2.6)

Poisson’s ratio.

Substituting (2.2) and (2.3) into (2.1) we get

∂τij

∂xj

= λ
∂ekk

∂xj

δij + µ
∂

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

)

= λ
∂ekk

∂xi

+ µ
∂2ui

∂xj∂xj

+ µ
∂2uj

∂xi∂xj

= (λ+ µ)
∂2uj

∂xixj

+ µ∇2ui
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In vector form (2.1) becomes

ρ
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∇2u (2.7)

Taking the divergence of (2.1) and denoting the dilatation by

∆ ≡ ekk =
∂u1

∂x1

+
∂u2

∂x2

+
∂u3

∂x3

(2.8)

we get the equation governing the dilatation alone

ρ
∂2∆

∂t2
= (λ+ µ)∇ · ∇∆+ µ∇2∆ = (λ+ 2µ)∇2∆ (2.9)

or,
∂2∆

∂t2
= c2

L∇2∆ (2.10)

where

cL =

√
λ+ 2µ

ρ
(2.11)

Thus the dilatation propagates as a wave at the speed cL. To be explained shortly, this

is a longitudinal waves, hence the subscript L. On the other hand, taking the curl of

(2.7) and denoting by #ω the rotation vector:

#ω = ∇× u (2.12)

we then get the governing equation for the rotation alone

∂2#ω

∂t2
= c2

T∇2#ω (2.13)

where

cT =

√
µ

ρ
(2.14)

Thus the rotation propagates as a wave at the slower speed cT . The subscript T indicates

that this is a transverse wave, to be shown later.

The ratio of two wave speeds is

cL

cT

=

√
λ+ µ

µ
> 1. (2.15)

Since
µ

λ
=

1

2ν
− 1 (2.16)
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it follows that the speed ratio depends only on Poisson’s ratio

cL

cT

=

√
2− 2ν

1− 2ν
(2.17)

There is a general theorem due to Helmholtz that any vector can be expressed as

the sum of an irrotational vector and a solenoidal vector i.e.,

u = ∇φ+∇×H (2.18)

subject to the constraint that

∇ ·H = 0 (2.19)

The scalar φ and the vector H are called the displacement potentials. Substituting this

into (2.7), we get

ρ
∂2

∂t2
[∇φ+∇×H] = µ∇2[∇φ+∇×H] + (λ+ µ)∇∇ · [∇φ+∇×H]

Since ∇ · ∇φ = ∇2φ, and ∇ · ∇ ×H = 0 we get

∇
[
(λ+ 2µ)∇2φ− ρ

∂2φ

∂t2

]
+∇×

[
µ∇2H− ρ

∂2H

∂t2

]
= 0 (2.20)

Clearly the above equation is satisied if

(λ+ 2µ)∇2φ− ρ
∂2φ

∂t2
= 0 (2.21)

and

µ∇2H− ρ
∂2H

∂t2
= 0 (2.22)

Although the governing equations are simplified, the two potentials are usually coupled

by boundary conditions, unless the physical domain is infinite.

A typical seismic record is shown in Figure 2.

3 Free waves in infinite space

The dilatational wave equation admits a plane sinusoidal wave solution:

φ(x, t) = φoe
ik(n·x−cLt) (3.1)
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Figure 3: A typical seismic record. P: Longitudinal wave; S: Transverse wave; R :

Rayleigh surface wave. From Billingham & King. Wave Motion, Cambridge U Press.
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Waves in Elastic Solids

A typical seismogram during an earthquake, showing 
the arrival of the P(primary), S(secondary) and R(Rayleigh) 

waves. Note that the Rayleigh waves have the largest amplitude.
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Figure by MIT OCW.
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Here the phase function is

θ(x, t) = k(n · x− cLt) (3.2)

which describes a moving surface. The wave number vector k = kn is defined to be

k = kn = ∇θ (3.3)

hence is orthogonal to the surface of constant phase, and represents the direction of

wave propagation. The frequency is

ω = kcT = −∂θ

∂t
(3.4)

A general solution is

φ = φ(n · x− cLt) (3.5)

Similarly the the following sinusoidal wave is a solution to the shear wave equation;

H = Hoe
ik(n·x−cT t) (3.6)

A general solution is

H = H(n · x− cT t) (3.7)

−−−−−−−
Note:

We can also write (3.5) and (3.9) as

φ = φ(t− n · x
cL

) (3.8)

and

H = H(t− n · x
cT

) (3.9)

where

sL =
n

cL

, sT =
n

cT

(3.10)

are called the slowness vectors of longitudinal and transverse waves respectively.

−−−−−

In a dilatational wave the displacement vector is parallel to the wave number vector:

uL = ∇φ = φ′n (3.11)
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from (3.5), where φ′ is the ordinary derivative of φ with repect to its argument. Hence

the dilatational wave is a longitudinal (compression) wave. On the other hand in a

rotational wave the displacement vector is perpendicular to the wave number vector,

uT = ∇×H = ex

(
∂Hz

∂y
− ∂Hy

∂z

)
+ ey

(
∂Hx

∂z
− ∂Hz

∂x

)
+ ez

(
∂Hy

∂x
− ∂Hx

∂y

)
= ex

(
H ′

zny −H ′
ynz

)
+ ey (H

′
xnz −H ′

znx) + ez

(
H ′

ynx −H ′
xny

)
= n×H′ (3.12)

from (3.7). Hence a rotational wave is a transverse (shear) wave.

4 Elastic waves in a plane

Refs. Graff, Achenbach,

Aki and Richards : Quantitative Seismology, v.1

Let us examine waves propagating in the vertical plane of x, y. All physical quantities

are assumed to be uniform in the direction of z, hence ∂/∂z = 0, then

ux =
∂φ

∂x
+

∂Hz

∂y
, uy =

∂φ

∂y
− ∂Hz

∂x
, uz = −∂Hx

∂y
+

∂Hy

∂x
(4.13)

and
∂Hx

∂x
+

∂Hy

∂y
= 0 (4.14)

where
∂2φ

∂x2
+

∂2φ

∂y2
=

1

c2
L

∂2φ

∂t2
, (4.15)

∂2Hp

∂x2
+

∂2Hp

∂y2
=

1

c2
T

∂2Hp

∂t2
, p = x, y, z (4.16)

Note that uz is also governed by (4.16).

Note that the in-plane displacements ux, uy depend only on φ and Hz, and not on

Hx, Hy. Out-of-plane motion uz depends on Hx, Hy but not on Hz. Hence the in-

plane displacement components ux, uy are independent of the out-of-plane component

uz. The in-plane displacements (ux, uy) are associated with dilatation and in-plane

shear, represented respectively by φ and Hz, which will be refered to as the P wave and

the SV wave. The out-of-plane displacement uz is associated with Hx and Hy, and will

be refered to as the SH wave.
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From Hooke’s law the stress components can be written

τxx = λ

(
∂ux

∂x
+

∂uy

∂y

)
+ 2µ

∂ux

∂x
= (λ+ 2µ)

(
∂ux

∂x
+

∂uy

∂y

)
− 2µ

∂uy

∂y

= (λ+ 2µ)

(
∂2φ

∂x2
+

∂2φ

∂y2

)
− 2µ

(
∂2φ

∂y2
− ∂2Hz

∂y∂x

)
(4.17)

τyy = λ

(
∂ux

∂x
+

∂uy

∂y

)
+ 2µ

∂uy

∂y
= (λ+ 2µ)

(
∂ux

∂x
+

∂uy

∂y

)
− 2µ

∂ux

∂x

= (λ+ 2µ)

(
∂2φ

∂x2
+

∂2φ

∂y2

)
− 2µ

(
∂2φ

∂x2
+

∂2Hz

∂x∂y

)
(4.18)

τzz =
λ

2(λ+ µ)
(τxx + τyy) = ν(τxx + τyy) = λ

(
∂2φ

∂x2
+

∂2φ

∂y2

)
(4.19)

τxy = µ

(
∂uy

∂x
+

∂ux

∂y

)
= µ

(
2
∂2φ

∂x∂y
− ∂2Hz

∂x2
+

∂2Hz

∂y2

)
(4.20)

τyz = µ
∂uz

∂y
= µ

(
−∂2Hx

∂y2
+

∂2Hy

∂y∂x

)
(4.21)

τxz = µ
∂uz

∂x
= µ

(
− ∂2Hx

∂∂x∂y
+

∂2Hy

∂x2

)
(4.22)

Different physical situations arise for different boundary conditions. We shall con-

sider first the half plane problem bounded by the plane y = 0.

5 Reflection of elastic waves from a plane boundary

Consider the half space y > 0, −∞ < x < ∞. Several types of boundary conditions

can be prescribed on the plane boundary : (i) dynamic: the stress components only

(the traction condition); (ii) kinematic: the displacement components only, or (iii). a

combination of stress components and displacement components. Most difficult are

(iv) the mixed conditions in which stresses are given over part of the boundary and

displacements over the other.

We consider the simplest case where the plane y = 0 is completely free of external

stresses,

τyy = τxy = 0, (5.23)

and

τyz = 0 (5.24)
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It is clear that (5.23) affects the P and SV waves only, while (5.24) affects the SH

wave only. Therefore we have two uncoupled problems each of which can be treated

separately.

5.1 P and SV waves

Consider the case where only P and SV waves are present, then Hx = Hy = 0. Let all

waves have wavenumber vectors inclined in the positve x direction:

φ = f(y)eiξx−iωt, Hz = hz(y)e
iζx−iωt (5.25)

It follows from (4.15) and (4.16) that

d2f

dy2
+ α2f = 0,

d2hz

dy2
+ β2hz = 0, (5.26)

with

α =

√
ω2

c2
L

− ξ2 =
√

k2
L − ξ2, β =

√
ω2

c2
T

− ζ2 =
√

k2
T − ζ2 (5.27)

We first take the square roots to be real; the general solution to (5.26) are sinusoids,

hence,

φ = AP e
i(ξx−αy−ωt) +BP e

i(ξx+αy−ωt), Hz = ASe
i(ζx−βy−ωt) +BSe

i(ζx+βy−ωt) (5.28)

On the right-hand sides the first terms are the incident waves and the second are the

reflected waves. If the incident amplitudes AP , AS and are given, what are the properties

of the reflected waves BP , BS? The wave number components can be written in the polar

form:

(ξ, α) = kL(sin θL, cos θL), (ζ, β) = kT (sin θT , cos θT ) (5.29)

where (kL, kT ) are the wavenumbers, the (θL, θT ) the directions of the P wave and SV

wave, respectively. In terms of these we rewrite (5.28)

φ = AP e
ikL(sin θLx−cos θLy−ωt) +BP e

ikL(sin θLx+cos θLy−ωt) (5.30)

Hz = ASe
ikT (sin θT x−cos θLy−ωt) +BSe

ikT (sin θT x+cos θT y−ωt) (5.31)

In order to satisfy (5.23) (τyy = τxy = 0) on y = 0 for all x, we must insist:

kL sin θL = kT sin θT , (ξ = ζ) (5.32)
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This is in the form of Snell’s law:

sin θL

cL

=
sin θT

cT

(5.33)

implying

sin θL

sin θT

=
cL

cT

=

√
λ+ 2µ

µ
=

kT

kL

≡ κ (5.34)

When (5.23) are applied on y = 0 the exponential factors cancel, and we get two

algebraic conditions for the two unknown amplitudes of the reflected waves (BP , BS) :

k2
L(2 sin

2 θL − κ2)(AP +BP )− k2
T sin 2θT (AS −BS) = 0 (5.35)

k2
L sin 2θL(AP −BP )− k2

T cos θT (AS +BS) = 0. (5.36)

Using (5.34), we get

2 sin2 θL − κ2 = κ2(2 sin2 θT − 1) = −κ2 cos 2θT

The two equations can be solved and the solution expressed in matrix form:
 BP

BS


 =


 SP P SSP

SP S SSS




 AP

AS


 (5.37)

where

S =


 SP P SSP

SP S SSS


 (5.38)

denotes the scattering matrrix. Thus SP S represents the reflected S-wave due to incident

P wave of unit amplitude, etc. It is straightforward to verify that

SP P =
sin 2θL sin 2θT − κ2 cos2 2θT

sin 2θL sin 2θT + κ2 cos2 2θT

(5.39)

SSP =
−2κ2 sin 2θT cos 2θT

sin 2θL sin 2θT + κ2 cos2 2θT

(5.40)

SP S =
2 sin 2θL cos 2θT

sin 2θL sin 2θT + κ2 cos2 2θT

(5.41)

SSS =
sin 2θL sin 2θT − κ2 cos2 2θT

sin 2θL sin 2θT + κ2 cos2 2θT

(5.42)
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In view of (5.33) and

κ =
cL

cT

=

√
2− 2ν

1− 2ν
(5.43)

The scattering matrix is a function of Poisson’s ratio and the angle of incidence.

(i) P- wave Incidence : In this case θL is the incidence angle. Consider the special

case when the only incident wave is a P wave. Then AP �= 0 and AS = 0 and only

SP P and SSP are relevant. . Note first that θL > θT in general . For normal incidence,

θL = 0, hence θT = 0. We find

SP P = −1, SP S = 0 (5.44)

there is no SV wave. The refelcted wave is a P wave. On the other hand if

sin 2θL sin 2θT − κ2 cos2 2θT = 0 (5.45)

then SP P = 0, hence BP = 0 but BS �= 0; only SV wave is reflected. This is the case

of mode conversion, whereby an incident P waves changes to a SV wave after reflection.

The amplitude of the reflected SV wave is

BS

AP

= SP S =
tan 2θT

κ2
(5.46)

(ii) SV wave Incidence : Let AP = 0 but AS �= 0. In this case θT is the incidence

angle. Then only SSP and SSS are relevant. For normal incidence, θL = θT = 0,

SSS = −1, and SSP = 0; no P wave is reflected. Mode conversion (BP �= 0, BS = 0) also

happens when (5.45) is satisfied. Since θL > θT , there is a critical incidence angle θT

beyond which the P wave cannot be reflected back into the solid and propagates only

along the x axis. At the critical angle

sin θL = 1, (θL = π/2), or sin θT = 1/κ (5.47)

by Snell’s law. Thus for ν = 1/3, κ = 2 and the critical incidence angle is θT = 30◦.

Beyond the critical angle of incidence, the P waves decay exponentially away from

the free surface. The amplitude of the SV wave is linear in y which is unphysical,

suggesting the limitation of unbounded space assumption.
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Figure 4: Amplitude ratios for incident P waves for various Possion’s ratios. From Graff:

Waves in Elastic Solids. Symbols should be converted according to : A1 → AP , A2 →
BP , B1 → AS, B2 → BS.



3.5. Reflection of elastic waves from a plane boundary 18

Figure 5: Reflected wave amplitude ratios for incident SV waves for various Possion’s

ratios. From Graff: Waves in Elastic Solids. Symbols should be converted according to

: A1 → AP , A2 → BP , B1 → AS, B2 → BS.
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5.2 SH wave

Because of (5.2)
∂Hx

∂x
+

∂Hy

∂y
= 0

we can introduce a stream function ψ so that

Hx = −∂ψ

∂y
, Hy =

∂ψ

∂x
(5.48)

where

∇2ψ =
1

c2
T

∂2ψ

∂t2
(5.49)

Clearly the out-of-plane dispacement is

uz = −∂Hx

∂y
+

∂Hy

∂x
=

∂2ψ

∂x2
+

∂2ψ

∂y2
= ∇2ψ (5.50)

and

τyz = µ
∂

∂y
∇2ψ =

µ

c2
T

∂

∂y

∂2ψ

∂t2
(5.51)

The zero-stress boundary condition implies

∂ψ

∂y
= 0 (5.52)

Thus the problem for ψ is analogous to one for sound waves reflected by a solid plane.

Again for monochromatic incident waves, the solution is easily shown to be

ψ =
(
Ae−iβy − Aeiβy

)
eiαx−iωt (5.53)

where

α2 + β2 = k2
T (5.54)

We remark that when the boundary is any cylindrical surface with axis parallel to

the z axis, the the stress-free condition reads

τzn = 0, on B. (5.55)

where n is the unit outward normal to B. Since in the pure SH wave problem

τzn = µ
∂uz

∂n
=

∂

∂n
∇2ψ =

µ

c2
T

∂

∂n

∂2ψ

∂t2

Condition (5.55) implies
∂ψ

∂n
= 0, on B. (5.56)

Thus the analogy to acoustic scattering by a hard object is true irrespective of the

geomntry of the scatterer.
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6 Rayleigh surface waves

Refs. Graff, Achenbach, Fung

In a homogeneous elastic half plane, in addition to P, SV and SH waves, another

wave which is trapped along the surface of a half plane can also be present. Because

most of the action is near the surface, this surface wave is of special importance to

seismic effects on the ground surface.

Let us start from the governing equations again

∂2φ

∂x2
+

∂2φ

∂y2
=

1

c2
L

∂2φ

∂t2
, (6.1)

∂2Hz

∂x2
+

∂2Hz

∂y2
=

1

c2
T

∂2Hz

∂t2
(6.2)

We now seek waves propagating along the x direction

φ = � (
f(y)eiξx−iωt

)
, Hz = � (

h(y)eiξx−iωt
)

(6.3)

Then f(y), h(y) must satisfy

d2f

dy2
+
(
ω2/c2

L − ξ2
)
f = 0,

d2h

dy2
+
(
ω2/c2

T − ξ2
)
h = 0, (6.4)

To have surface waves we insist that

α =
√

ξ2 − ω2/c2
L, β =

√
ξ2 − ω2/c2

T (6.5)

be real and postive. Keeping only the solutions which are bounded for y ∼ ∞, we get

φ = Ae−αyei(ξx−ωt), Hz = Be−βyei(ξx−ωt). (6.6)

The expressions for the displacements and stresses can be found straightforwardly.

ux =
(
iξAe−αy − βBe−βy

)
ei(ξx−ωt), (6.7)

uy = −
(
αAe−αy + iξBe−βy

)
ei(ξx−ωt), (6.8)

τxx = µ
{(

β
2 − ξ2 − 2α2

)
Ae−αy − 2iβξBe−βy

}
ei(ξx−ωt), (6.9)

τyy = µ
{(

β
2
+ ξ2

)
Ae−αy + 2iβξBe−βy

}
ei(ξx−ωt), (6.10)

τxy = µ
{
−2iαξAe−αy +

(
ξ2 + β

2
)
Be−βy

}
ei(ξx−ωt) (6.11)
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On the free surface the traction-free conditions τyy = τxy = 0 require that(
β

2
+ ξ2

)
A+ 2iβξB = 0, (6.12)

−2iαξA+
(
β

2
+ ξ2

)
B = 0. (6.13)

For nontrivial solutions of A,B the coefficient determinant must vanish,(
β

2
+ ξ2

)2

− 4αβξ2 = 0, (6.14)

or [
2ξ2 − ω2

c2
T

]2

− 4ξ2

√
ξ2 − ω2

c2
L

√
ξ2 − ω2

c2
T

= 0 (6.15)

which is the dispersion relation between frequency ω and wavenumber ξ. From either

(6.12) or (6.13) we get the amplitude ratio:

A

B
= − 2iβξ

β
2
+ ξ2

=
β

2
+ ξ2

2iαξ
, (6.16)

In terms of the wave velocity c = ω/ξ, (6.15) becomes(
2− c2

c2
T

)2

= 4

(
1− c2

c2
L

) 1
2
(
1− c2

c2
T

) 1
2

. (6.17)

or, upon squaring both sides, finally

c2

c2
T

{(
c

cT

)6

− 8

(
c

cT

)4

+

(
24− 16

κ2

)(
c

cT

)2

− 16

(
1− 1

κ2

)}
= 0. (6.18)

where

k =
cL

cT

=

√
λ+ 2µ

µ
=

√
2− 2ν

1− 2ν

The first solution c = ω = 0 is at best a static problem. In fact α = β = ξ and A = −iB,

so that ux = uy ≡ 0 which is of no interest.

We need only consider the cubic equation for c2. Note that the roots of the cubic

equation depend only on Poisson’s ratio, through κ2 = 2(1− ν)/(1− 2ν). There can be

three real roots for c or ω, or one real root and two complex-conjugate roots. We rule

out the latter because the complex roots imply either temporal damping or instability;

neither of which is a propagating wave. When all three roots are real we must pick the

one so that both α and β are real. We shall denote the speed of Rayleigh wave by cR.
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Figure 6: The velocity of Rayleigh surface waves cR. From Fung Foundations of Solid

Mechanics.

For c = 0, the factor in curley brackets is

{.} = −16
(
1− c2

T

c2
L

)
< 0

For c = cT the same factor is equal to unity and hence positive. There must be a solution

for c such that 0 < c < cT . Furthermore, we cannot have roots in the range c/cT > 1.

If so,

β
2
= ξ2

(
1− c2

c2
T

)
< 0

which is not a surface wave. Thus the surface wave, if it exists, is slower than the shear

wave.

Numerical studies for the entire range of Poisson’s ratio (0 < ν < 0.5) have shown

that there are one real and two complex conjugate roots if ν > 0.263 . . . and three real

roots if ν < 0.263 . . .. But there is only one real root that gives the surface wave velocity

cR. A graph of cR for all values of Poisson’s ratio, due to Knopoff , is shown in Fig. 6.

A curve-fitted expression for the Rayleigh wave velocity is

cR/cT = (0 · 87 + 1 · 12ν)/(1 + ν). (6.19)

For rocks, λ = µ and ν = 1
4
, the roots are

(c/cT )
2 = 4, 2 + 2/

√
3, 2− 2/

√
3. (6.20)

Figure by MIT OCW.
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The only acceptable root for Rayleigh wave speed cR is

(cR/cT )
2 = (2− 2/

√
3)

1
2 = 0 · 9194 (6.21)

or

cR = 0.9588cT . (6.22)

The particle displacement of a particle on the free surface is, from (6.7) and (6.8)

ux = iA

(
ξ − β

2
+ ξ2

2ξ

)
ei(ξx−ωt) (6.23)

uy = A

(
−α+

β
2
+ ξ2

2ξ

)
ei(ξx−ωt) (6.24)

Note that

a = A

[
ξ − β

2
+ ξ2

2ξ

]
= A

[
ξ +

k2
T

2ξ

]
> 0

b = A

[
−α+

β
2
+ ξ2

2ξ

]
= A

[
(α− β)2 + k2

L

2β

]
> 0

hence

ux = a sin(ωt− ξx), uy = b cos(ωt− ξx)

and
u2

x

a2
+

u2
y

b2
= 1 (6.25)

The particle trajectory is an ellipse. In complex form we have

ux

a
+ i

uy

b
= exp {i (ωt− ξx− π/2)} (6.26)

Hence as t increases,a particle at (x, 0) traces the ellipse in the counter-clockwise direc-

tion. See figure (6).



3.7. Scattering of SH waves by a circular cavity 24

Figure 7: Displacement of particles on the ground surface in Rayleigh surface wave From

Fung Foundations of Solid Mechanics.

7 Scattering of monochromatic SH waves by a cav-

ity

7.1 The boundary-value problem

We consider the scattering of two-dimensional SH waves of single frequency. The time-

dependent potential can be wirtten as

ψ(x, y, t) = � [
φ(x, y)e−iωt

]
(7.1)

where the potential φ is governed by the Helmholtz equation

∇2φ+ k2φ =
∂2φ

∂x2
+

∂2φ2

∂y2
+ k2φ = 0, k =

ω

cT

(7.2)

To be specific consider the scatterer to be a finite cavity of some general geometry. On

the stress-free boundary B the shear stress vanishes,

τzn = −µω2

c2
T

�
(
∂φ

∂n
e−iωt

)
= 0 (7.3)

hence
∂φ

∂n
= 0, on B (7.4)

Let the incident wave be a plane wave

φI = Aeik·x (7.5)

Figure by MIT OCW.
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Let the angle of incidence with respect to the positive x axis be θo. In polar coordinates

the incident wave vector is

k = k(cos θo, sin θo), x = r(cos θ, sin θ) (7.6)

and the potential is

φI = A exp [ikr(cos θo cos θ + sin θo sin θ)] = Aeikr cos(θ−θo) (7.7)

Let the total wave be the sum of the incident and scattered waves

φ = φI + φS (7.8)

For the scattered wave the boundary condition on the cavity surface is

∂φS

∂n
= −∂φS

∂n
, on B. (7.9)

In addition, the scattered wave must satisfy the radiation condition at infinity, i.e., it

must propagate outward at infinty.

Note that this boundary value problem is identical to the one for sound plane sound

wave in air (or water) scattered by a perfectly rigid cylinder.

We treat below the special case of a circular cavity of readius a This is one of the

few geomentries that can be solved analytically.

7.2 The circular cavity

In polar coordinates the governing equation reads

1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂θ2
+ k2φ = 0, r > a. (7.10)

Since φI satisfies the preceding equation, so does φS.

First, It is shown in Appendix A that the plane wave can be expanded in Fourier-

Bessel series :

eikr cos(θ−θo) =
∞∑

n=0

εni
nJn(kr) cosn(θ − θo) (7.11)

where εn is the Jacobi symbol:

ε0 = 0, εn = 2, n = 1, 2, 3, . . . (7.12)
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Each term in the series (7.11) is called a partial wave.

By the method of separation of variables,

φS(r, θ) = R(r)Θ(θ)

we find

r2R′′ + rR′ + (k2r2 − n2)R = 0, and Θ′′ + n2Θ = 0

where n = 0, 1, 2, . . . are eigenvalues in order that Θ is periodic in θ with period 2π.

For each eigenvalue n the possible solutions are

Θn = (sinnθ, cosnθ),

Rn =
(
H(1)

n (kr), H(2)
n (kr)

)
,

where H
(1)
n (kr), H

(2)
n (kr) are Hankel functions of the first and second kind, related to

the Bessel and Weber functions by

H(1)
n (kr) = Jn(kr) + iYn(kr), H(2)

n (kr) = Jn(kr)− iYn(kr) (7.13)

The most general solution to the Helmholtz equation is

φS = A

∞∑
n=0

(An sinnθ +Bn cosnθ)
[
CnH

(1)
n (kr) +DnH

(2)
n (kr)

]
, (7.14)

For large radius the asymptotic form of the Hankel functions are

H(1)
n ∼

√
2

πkr
ei(kr−π

4
−nπ

2
), H(2)

n ∼
√

2

πkr
e−i(kr−π

4
−nπ

2
) (7.15)

In conjunction with the time factor exp(−iωt), H
(1)
n gives an outgoing wave while H

(2)
n

gives an incoming wave. To satisfy the radiation condition, we must discard all terms

involving H
(2)
n . From here on we shall abbreviate H

(1)
n simply by Hn. The scattered

wave is now

φS = A

∞∑
n=0

(An sinnθ +Bn cosnθ)Hn(kr) (7.16)

The expansion coefficients (An, Bn) must be chosen to satisfy the boundary condition

on the cavity surface1 Once they are determined, the wave is found everywhere. In

1In one of the numerical solution techniques, one divides the physical region by a circle enclosing the

cavity. Between the cavity and the circle, finite elements are used. Outside the circle, (7.16) is used.

By constructing a suitable variational principle, finite element computation yields the nodal coefficients

as well as the expansion coefficients. See (Chen & Mei , 1974).
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particular in the far field, we can use the asymptotic formula to get

φS ∼ A
∞∑

n=0

(An sinnθ +Bn cosnθ) e
−inπ/2

√
2

πkr
eikr−iπ/4 (7.17)

Let us define the dimensionless directivity factor

A(θ) =
∞∑

n=0

(An sinnθ +Bn cosnθ) e
−inπ/2 (7.18)

which indicates the angular variation of the far-field amplitude, then

φS ∼ AA(θ)
√

2

πkr
eikr−iπ/4 (7.19)

This expression exhibits clearly the asymptotic behaviour of φS as an outgoing wave.

By differentiation, we readily see that

lim
kr→∞

√
r

(
∂φS

∂r
− φS

)
= 0 (7.20)

which is one way of stating the radiation condition for two dimensional SH waves.

Let us complete the solution.

Without loss of generality we can take θo = 0. On the surface of the cylindrical

cavity r = a, we impose
∂φI

∂r
+

∂φS

∂r
= 0, r = a

It follows that An = 0 and

εninAJ ′
n(ka) +BnkH

′
n(ka) = 0, n = 0, 1, 2, 3, . . . n

where primes denote differentiation with respect to the argument. Hence

Bn = −Aεni
n J ′

n(ka)

H ′
n(ka)

The sum of incident and scattered waves is

φ = A
∞∑

n=0

εni
n

[
Jn(kr)− J ′

n(ka)

H ′
n(ka)

Hn(kr)

]
cosnθ (7.21)

and

ψ = Ae−iωt

∞∑
n=0

εni
n

[
Jn(kr)− J ′

n(ka)

H ′
n(ka)

Hn(kr)

]
cosnθ (7.22)
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Figure 8: Angular distribution of scattered energy in the far field in cylindrical scattering

The limit of long waves can be approximatedly analyzed by using the expansions for

Bessel functions for small argument

J0(x) ∼ 1− x2

4
+O(x4), Jn(x) ∼ xn

2nn!
, ;n = 1, 2, 3...

Y0(x) ∼ 2

π
log x, Yn(x) ∼ 2n(n− 1)!

πxn
, n = 1, 2, 3... (7.23)

Then the scattered wave has the potential

φS

A
∼ −H0(kr)

J ′
0(ka)

H ′
0(ka)

− 2iH1(kr)
J ′

1(ka)

H ′
1(ka)

cos θ +O(ka)3

=
π

2
(ka)2

(
− i

2
H0(kr)−H1(kr) cos θ

)
+O(ka)3 (7.24)

The term H0(kr) coresponds to a oscillating source which sends istropic waves in all

directions. The second term is a dipole sending scattered waves mostly in forward and

backward directions. For large kr, the angular variation is a lot more complex. The far

field pattern for various ka is shown in fig 4.

On the cavity surface surface, the displacement is proportional to ∇2ψ(a, θ) or

∇2φ(a, θ). The angular variation is plotted for several ka in figure 5.

For numerical simulations, see the website

http://ocw.mit.edu/OcwWeb/Civil-and-Environmental-Engineering/1-138JFall-2004/Simulations/

Remark on energy flux: At any radius r the total rate of energy outflux by the
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Figure 9: Polar distribution of φ(a, θ) on a circular cylinder.
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scattered wave is

r

∫ 2π

0

dθτrz
∂uz

∂t
= µr

∫ 2π

0

dθ�
[
−µk2

∂φ

∂r
e−iωt

]
� [iωk2φe−iωt]

= −µωk4r

2

∫ 2π

0

dθ�
[
iφ∗∂φ

∂r

]
= −µωk4r

2
�
∫ 2π

0

dθ

[
φ∗∂φ

∂r

]
(7.25)

where overline indicates time averaging over a wave period 2π/ω. The integral can be

evaluated by using the asymptotic expression.

Remark: In the analogous case of plane acoustics where the sound pressure and

radial fluid velocity are respectively,

p = −ρo
∂φ

∂t
, and ur =

∂φ

∂r
(7.26)

the energy scattering rate is

r

∫ 2π

0

dθpur =
ωρor

2
�
∫

C

dθ

(
−iφ∗∂φ

∂r

)
= −ωρor

2
�
∫

C

dθ

(
φ∗∂φ

∂r

)
(7.27)

8 The optical theorem

For the same scatterer and the same frequency ω, different angles of incidence θj define

different scattering problems φj. In particular at infinty, we have

φj ∼ Aj

{
eikr cos(θ−θj) +Aj(θ)

√
2

πkr
eikr−iπ/4

}
(8.1)

Let us apply Green’s formula to φ1 and φ2 over a closed area bounded by a closed

contour C,∫∫
S

(
φ2∇2φ1 − φ1∇2φ2

)
dA =

∫
B

(
φ2

∂φ1

∂n
− φ1

∂φ2

∂n

)
ds+

∫
C

ds

(
φ2

∂φ1

∂n
− φ1

∂φ1

∂n

)
ds

where n refers to the unit normal vector pointing out of S. The surface integral vanishes

on account of the Helmholtz equation, while the line integral along the cavity surface

vanishes by virture of the boundary condition, hence∫
C

ds

(
φ2

∂φ1

∂n
− φ1

∂φ2

∂n

)
ds = 0 (8.2)
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By similar reasioning, we get∫
C

ds

(
φ2

∂φ∗
1

∂n
− φ∗

1

∂φ2

∂n

)
ds = 0 (8.3)

where φ∗
1 denotes the complex conjugate of φ1.

Let us choose φ1 = φ2 = φ in (8.3), and get∫
C

ds

(
φ
∂φ∗

∂n
− φ∗∂φ

∂n

)
ds = 2�

(∫
C

ds φ
∂φ∗

∂n

)
= 0 (8.4)

Physically, across any circle the net rate of energy flux vanishes, i.e., the scattered power

must be balanced by the incident power.

Making use of (8.1) we get

0 = �
∫ 2π

0

rdθ

[
eikr cos(θ−θo) +

√
2

πkr
Ao(θ)e

ikr−iπ/4

]

·
[
−ik cos(θ − θo)e

−ikr cos(θ−θo) − ik

√
2

πkr
A∗

o(θ)e
−ikr+iπ/4

]

= �
∫ 2π

0

rdθ

{
−ik cos(θ − θo) +

2

πkr
(−ik)|Ao|2

+eikr[cos θ−θo)−1]+iπ/4(−ik)

√
2

πkr
A∗

o

+ e−ikr[cos θ−θo)−1]−iπ/4(−ik) cos(θ − θo)

√
2

πkr
Ao

}

The first term in the integrand gives no contribution to the integral above because of

periodicity. Since �(if) = �(if ∗), we get

0 = − 2

π

∫ 2π

0

|Ao(θ)|2dθ

+�
∫ 2π

0

rdθ

{
Ao(−ik)

√
2

πkr
[1 + cos(θ − θo)]e

iπ/4eikr(1−cos(θ−θo))

}

= − 2

π

∫ 2π

0

|Ao(θ)|2dθ

−�
{
e−iπ/4

[
r

√
2

πkr

∫ 2π

0

dθAo(θ)[1 + cos(θ − θo)]e
ikr(1−cos(θ−θo))

]}

For large kr the remaining integral can be found approximately by the method of sta-

tionary phase (see Appendix B), with the result∫ 2π

0

dθAo(θ)[1 + cos(θ − θo)]e
ikr(1−cos(θ−θo)) ∼ Ao(θo)

√
2π

kr
eiπ/4 (8.5)
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We get finally ∫ 2π

0

|Ao|2dθ = −2�Ao(θo) (8.6)

Thus the total scattered energy in all directions is related to the amplitude of the

scattered wave in the forward direction. In atomic physics, where this theorem was

originated (by Niels Bohr), measurement of the scattering amplitude in all directions is

not easy. This theorem suggests an econmical alternative.

Homework For the same scatterer, consider two scattering problems φ1 and φ2.

Show that

A1(θ2 + π) = A2(θ1 + π) (8.7)

For general elastic waves, see Mei (1978) for similar and other identities in elastody-

namics with rigid inclusions. J . Acoust. Soc. Am. 64(5), 1514-1522.

9 Diffraction of SH wave by a long crack - the parabolic

approximation

References

Morse & Ingard, Theoretical Acoustics Series expansions.

Born & Wolf, Principle of Optics Fourier Transform and the method of steepest de-

scent.

B. Noble. The Wiener-Hopf Technique.

If the obstacle is large, there is always a shadow behind where the incident wave

cannot penetrate deeply. The phenomenon of scattering by large obstacles is usually

referred to as diffraction.

Diffraction of plane incident SH waves by a long crack is identical to that of a hard

screen in acoustics. The exact solution was due to A. Sommerfeld. We shall apply

the boundary layer idea and give the approximate solution valid far away from the tip

kr � 1 by the parabolic approximation, due to V. Fock.

Refering to figure () let us make a crude division of the entire field into the illuminated

zone I , dominated by the incident wave alone, the reflection zone II dominated the sum
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Figure 10: Wave zones near a long crack

of the incident and the reflected wave, and the shadow zone III where there is no wave.

The boundaries of these zones are the rays touching the crack tip. According to this

crude picture the solution is

φ =




Ao exp(ik cos θx+ ik sin θy), I

Ao[exp(ik cos θx+ ik sin θy) + exp(ik cos θx− ik sin θy)], II

0, III

(9.1)

Clearly (9.1) is inadquate because the potential cannot be discontinuous across the

boundaries. A remedy to provide smooth transitions is needed.

Consider the shadow boundary Ox′. Let us introduce a new cartesian coordinate

system so that x′ axis is along, while the y′ axis is normal to, the shadow boundary.

The relations between (x, y) and (x′, y′) are

x′ = x cos θ + y sin θ, y′ = y cos θ − x sin θ (9.2)

Thus the incident wave is simply

φI = Aoe
ikx′

(9.3)

Following the chain rule of differentiation,

∂φ

∂x
=

∂φ

∂x′
∂x′

∂x
+

∂φ

∂y′
∂y′

∂x
= cos θ

∂φ

∂x′ − sin θ
∂φ

∂y′
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∂φ

∂y
=

∂φ

∂x′
∂x′

∂y
+

∂φ

∂y′
∂y′

∂y
= sin θ

∂φ

∂x′ + cos θ
∂φ

∂y′

we can show straightforwardly that

∂2φ

∂x2
+

∂2φ

∂y2
=

∂2φ

∂x′2 +
∂2φ

∂y′2

so that the Helmholtz equation is unchanged in form in the x′, y′ system.

We try to fit a boundary layer along the x’ axis and expect the potential to be almost

like a plane wave

φ(x,′ , y′) = A(x′, y′)eikx′
(9.4)

, but the amplitude is slowly modulated in both x′ and y′ directions. Substituting (9.4

into the Helmholtz equation, we get

eikx′
{
∂2A

∂x′2 + 2ik
∂A

∂x′ − k2A+
∂2A

∂y′2
+ k2A

}
= 0 (9.5)

Expecting that the characteristic scale Lx of A along x′ is much longer than a wavelength,

kLx � 1, we have
∂A

∂x′ � kA, hence 2ik
∂A

∂x′ �
∂2A

∂x′2

We get as the first approximation the Schródinger equation2

2ik
∂A

∂x′ +
∂2A

∂y′2
≈ 0 (9.7)

In this transition zone where the remaining terms are of comparable importance, hence

the length scales must be related by

k

x′ ∼
1

y′2
, implying ky′ ∼

√
kx′

Thus the transition zone is the interior of a parabola.

Equation (9.7) is of the parabolic type. The boundary conditions are

A(x,∞) = 0 (9.8)

2In one-dimensional quantum mechanics the wave function in a potential-free field is governed by

the Schrödinger equation

ih
∂ψ

∂t
+

1
2M

∂2ψ

∂x2
= 0 (9.6)
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A(x,−∞) = Ao (9.9)

The initial condition is

A(0, y′) =


 0, y′ > 0,

A0, y′ < 0
(9.10)

he initial-boundary value for A has no intrinsic length scales except x′, y′ themselves.

Therefore the condition kLx � 1 means kx′ � 1 i.e., far away from the tip. This

problem is somwhat analogous to the problem of one-dimensional heat diffusion across

a boundary. A convenient way of solution is the method of similarity.

Assume the solution

A = Aof(γ) (9.11)

where

γ =
−ky′√
πkx′ (9.12)

is the similarity variable. We find upon subsitution that f satisfies the ordinary differ-

ential equation

f ′′ − iπγf ′ = 0 (9.13)

subject to the boundary conditions that

f → 0, γ → −∞; f → 1, γ → ∞. (9.14)

Rewriting (9.13) as
f ′′

f ′ = iπγ

we get

log f ′ = iπγ/2 + constant.

One more integration gives

f = C

∫ γ

−∞
exp

(
iπu2

2

)
du

Since ∫ ∞

0

exp

(
iπu2

2

)
du =

eiπ/4

√
2

we get

C =
e−iπ/4

√
2
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and

f =
A

Ao

=
e−iπ/4

√
2

∫ γ

−∞
exp

(
iπu2

2

)
du =

e−iπ/4

√
2

{
eiπ/4

√
2
+

∫ γ

0

exp

(
iπu2

2

)
du

}
(9.15)

Defining the cosine and sine Fresnel integrals by

C(γ) =

∫ γ

0

cos

(
πv2

2

)
dv, S(γ) =

∫ γ

0

sin

(
πv2

2

)
dv (9.16)

we can then write
e−iπ/4

√
2

{[
1

2
+ C(γ)

]
+ i

[
1

2
+ S(γ)

]}
(9.17)

In the complex plane the plot of C(γ)+ iS(γ) vs. γ is the famous Cornu’s spiral, shown

in figure (9).

The wave intensity is given by

|A|2
A2

o

=
1

2

{[
1

2
+ C(γ)

]2

+

[
1

2
+ S(γ)

]2
}

(9.18)

Since C, S → −1/2 as γ → −∞, the wave intensity diminshes to zero gradually into

the shadow. However, C, S → 1/2 as γ → ∞ in an oscillatory manner. The wave

intensity oscillates while approaching to unity asymptotically. In optics this shows up

as alternately light and dark diffraction bands.

In more complex propagation problems, the parabolic approximation can simplify the

numerical task in that an elliptic boundary value problem involving an infinite domain

is reduced to an initial boundary value problem. One can use Crank-Nicholson scheme

to march in ”time”, i.e., x′.

Homework: Find by the parabolic approximation the transition solution along the

edge of the reflection zone.
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Figure 11: Cornu’s spiral, a plot of the Fresnel integrals in the comiplex plane of C(γ)+

iS(γ). Abscissa: C(γ). Ordinate : iS(γ).

Figure 12: Diffraction of a normally incident plane sound wave on a rigid half screen.

Ordinate: f(γ) = A/Ao. Abscissa: −γ = ky′/
√
πkx′.

Figure by MIT OCW.
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10 Exact theory of Wedge Diffraction

Refs. J. J. Stoker 1957 , Water waves. pp 120-125

Born & Wolf, 1950 Principles of Optics

Noble, 1963 The Wiener-Hopf Technique

The diffraction of plane incident waves by a semi-infinite barrier is a celebrated

problem in classical physics and was first solved by A. Sommerfeld. Several analytical

treatments are available, including the mathematically very elegant technique of Wiener

& Hopf is available . In the last section we gave an approximate theory by parabolic

approximation. Here we present an exact theory for the more general case of a wedge,

by the more elementary method of series expansion. Though the result is in an infinite

series and not in closed form, quantitative information can be calculated quite readily

by a computer.

The basic ideas were described for water waves by Stoker (1957) for a wedge. Ex-

tensive numerical results were reported by Dr. H.S. Chen (Army Corps of Engineers,

Tech Rept: CERC 878-16, 1987). Based on Stoker’s analysis more extensive numerical

computations have been carried out by Dr. G.D. Li. To facilitate the understanding

of the physics, these results are presented in animated form in our subject website (see

Simulations):

http://ocw.mit.edu/OcwWeb/Civil-and-Environmental-Engineering/1-138JFall-2004/

We shall describe the problem for water waves; the analysis and results can be

adapted for cracks, sound,... etc.

Refering to Figure 10, we consider a vertical wedge of arbitrary apex angle in a

sea of constant depth h. Let the tip of the wedge be the z axis orgin and the x axis

coincide with one wall. The still water surface is the x, y plane. In the cylindrical polar

coordinate system (r, θ, z) with (x = r cos θ, y = r sin θ), z, the walls are given by θ = 0

and νπ with 1 < ν < 2. A train of monochromatic waves is incident from infinity at the

angle α with respect the x axis.

In the water region defined by 0 < θ < νπ and 0 ≥ z ≥ −h, the velocity potential

Φ(r, θ, z, t) must satisfy the Laplace equation,

∂2Φ

∂r2
+
1

r

∂Φ

∂r
+

1

r2

∂2Φ

∂θ2
+

∂2Φ

∂z2
= 0 (10.1)
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Figure 13: Coordinate system and subregions.

and subject to the linearized free surface boundary conditions

∂Φ

∂t
= −gζ (10.2)

∂ζ

∂t
=

∂Φ

∂z
(10.3)

whicdh can be combined to give

∂2Φ

∂t2
+ g

∂Φ

∂z
= 0, z = 0. (10.4)

Along the impermeable bottom and walls, the no flux boundary conditions are

∂Φ

∂z
= 0 on z = −h (10.5)

∂Φ

∂θ
= 0 at θ = 0 and νπ (10.6)

The incident wave train is given by

Φi =
−igA0

ω

cosh k(z + h)

cosh kh
φ(r, θ)e−ikr cos(θ−α)−iωt (10.7)

where k is the real wavenumber satisfying the dispersion relation

ω2 = gk tanh kh, (10.8)
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and π + α is the angle of incidence measured from the x axis. A0 is the incident wave

amplitude.

Because of the vertical side-walls, the three dimensional problem can be reduced to

a two dimensional one by letting

Φ(r, θ, z, t) = A0
cosh k(z + h)

cosh kh
φ(r, θ)e−iωt (10.9)

where φ(r, θ, t) is the horizontal pattern of the velocity potential normlized for an inci-

dent wave of unit amplitude.

Substituting Equation (10.9) into the Laplace equation and using both the kinematic

and dynamic boundary conditions on the free surface, the Laplace equation is then

reduced to the Helmholtz equation

∂2φ

∂r2
+
1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
+ k2φ = 0, νπ ≥ θ ≥ 0. (10.10)

with the following boundary conditions on the rigid walls of the wedge:

∂φ

∂θ
= 0 at θ = 0 and θ0 (10.11)

The free surface displacement ζ from the mean water level z=0 can be represented by

ζ(r, θ, t) = −1
g

∂Φ

∂t
= A0η(r, θ)e

−iωt (10.12)

Note that η is dimensionless.

Refering to Figure 10, the entire water region can be divided into three zones accord-

ing to the crude picture of geometrical optics. I: the zone of incident and reflected plane

waves, II : the zone of incident plane wave and III ; the shadow with no plane wave.

This crude picture is discontinuous at the border lines separating the zones. Siknce the

physical solution must be smooth every where we must find the transitions. Let us use

the ideas of boundary layers.

Let the total potential be expressed in a compact form by

φ = φo(r, θ) + φs(r, θ), for all 0 < θ < νπ (10.13)

where φo consists of only the plane waves,

φo(r, θ) =




φi + φr π − α > θ > 0, in I;

φi π + α > θ > π − α, in II;

0 θ0 > θ > π + α, in III.

(10.14)
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Here φi denotes the incident wave

φi = e−ikr cos(θ−α) (10.15)

where α denotes the angle of incidence, and φr the reflected wave

φr = e−ikr cos(θ+α) (10.16)

The correction is the diffracted wave φs which must satisfy the radiation condition and

behaves as an outgoing wave at infinity, i.e.,

lim
r→0

√
r(
∂φs

∂r
− ikφs) = 0 (10.17)

or

φs ∼ A(θ)eikr

√
kr

at r → ∞ (10.18)

10.1 Solution by Fourier series (or, finite Fourier Transform)

Let us solve the scattered wave formally by Fourier series

φ(r, θ) =
1

νπ
φ̄0(r) +

2

νπ

∞∑
n=1

φ̄n(r) cos
nθ

ν
(10.19)

then, the Fourier coefficients are:

φ̄n(kr) =

∫ νπ

0

φ(kr, θ) cos
nθ

ν
dθ (10.20)

From (10.10), each Fourier coefficient satisfies

r2∂
2φ̄n

∂r2
+ r

∂φ̄n

∂r
+

[
(kr)2 −

(n
ν

)2
]
φ̄n = 0 (10.21)

The general solution finite at the origin is

φ̄n(kr) = anJn/ν(kr) (10.22)

where the coefficient’s an, n = 0, 1, 2, 3, ... are to be determined.

The Fourier coefficient of (10.13) reads

φ̄n(kr) = anJn/ν(kr) =

∫ νπ

0

φs cos
nθ

ν
dθ +

∫ νπ

0

φo cos
nθ

ν
dθ (10.23)
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or

φ̄s,n = anJn/ν(kr)− φ̄o,n (10.24)

Applying the operator limr→∞
√
r(∂/∂r − ik) to both sides of (10.23), and using the

Sommerfeld radiation condition (10.17), we have

lim
r→∞

√
r

(
∂

∂r
− ik

)[
anJn/ν(kr)−

∫ νπ

0

φo cos
nθ

ν
dθ

]
= 0 (10.25)

We now perform some asymptotic analysis for large kr to evaluate an.

The first part can be treated explicitly for large kr, since

Jn/ν(kr) ∼
√

2

πkr
cos

(
kr − nπ

2ν
− π

4

)
(10.26)

It follows that

lim
r→∞

√
r

(
∂

∂r
− ik

)
Jn/ν(kr) =

√
2k

π
e−i(kr−nπ

2ν
+π

4 ) (10.27)

For the second part, we substitute φo from (10.15) and (10.16) to rewrite the integral as

∫ νπ

0

φo cos
nθ

ν
dθ =

1︷ ︸︸ ︷∫ π−α

0

e−ikr cos(θ−α) cos
nθ

ν
dθ+

2︷ ︸︸ ︷∫ π−α

0

e−ikr cos(θ+α) cos
nθ

ν
dθ

+

3︷ ︸︸ ︷∫ π+α

π−α

e−ikr cos(θ−α) cos
nθ

ν
dθ (10.28)

Each of the integrals above can be evaluated for large kr by the method of stationary

phase (again). Details are given in the next subsection. only the results are cited below.

The first integral is appoximately

I1(θ) = cos
(nα

ν

)
e−ikr+ iπ

4

[
2π

kr

] 1
2

+O

(
1

kr

)
(10.29)

from which

lim
r→∞

√
r

(
∂

∂r
− ik

)∫ π−α

0

e−ikr cos(θ−α) cos
nθ

ν
dθ

= lim
r→∞

√
r

(
∂

∂r
− ik

){
cos

(nα
ν

)
e−ikr+ iπ

4

[
2π

kr

] 1
2

}

= 2
√
2πk cos

(nα
ν

)
e−ikr− iπ

4 (10.30)
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where we have used i = eiπ/2. By similar analysis the second integral is found to be

I2(θ) ≈ 1

2
cos

(
n(π − α)

ν

)
eikr− iπ

4

[
2π

kr

] 1
2

(10.31)

It follows that

lim
r→∞

√
r

(
∂

∂r
− ik

)∫ π−α

0

e−ikr cos(θ+α) cos
nθ

ν
dθ

= lim
r→∞

√
r

(
∂

∂r
− ik

){
1

2
cos(

n(π − α)

ν
)eikr− iπ

4

[
2π

kr

] 1
2

}
= 0 (10.32)

Finally the third integral is approximately

I3(θ) ≈ 1

2
cos(

n(π + α)

ν
)eikr− iπ

4

[
2π

kr

] 1
2

(10.33)

hence

lim
r→∞

√
r

(
∂

∂r
− ik

)∫ π+α

0

e−ikr cos(θ+α) cos
nθ

ν
dθ

= lim
r→∞

√
r

(
∂

∂r
− ik

){
1

2
cos(

n(π + α)

ν
)eikr− iπ

4

[
2π

kr

] 1
2

}
= 0 (10.34)

In summary, only the first integral associated with the incident wave furnishes a

nonvanishing contribution to the expansion coefficients, i.e.,

lim
r→∞

√
r

(
∂

∂r
− ik

)∫ νπ

0

φo cos
nθ

ν
dθ ∼ 2

√
2πk cos

nα

ν
e−i(kr+π

4 ) (10.35)

With this result we get by substituting (10.27) and (10.35) into (10.25), the coefficients

an are found

an = 2π cos
nα

ν
e−i nπ

2ν (10.36)

By the inverse transform, (10.19), we get the exact solution,

φ(r, θ) =
2

ν

[
J0(kr) + 2

∞∑
n=1

e−i nπ
2ν Jn/ν(kr) cos

nα

ν
cos

nθ

ν

]
(10.37)

Numerical computations by MATLAB is straightforward. Aside from its own practical

interest, this solution is useful for checking strictly numerical methods for diffraction

problem for other geometries.
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10.2 Asymptoic approximation of Integrals

For the first integral I1, we take the phase to be f1(θ) = k cos(θ − α). The points of

stationary phase must be found from

f ′
1(θ) = −k sin(θ − α) = 0, (10.1)

hence θ = α, α ± π. Only the first at θ1 = α lies in the range of integration (0, π − α)

and is the stationary point. Since

f ′′
1 (θ1) = −k cos(θ1 − α) = −k < 0 (10.2)

the integral is approximately

I1(θ) ≈ cos(
nθ1

ν
)e−ikr cos(θ1−α)+ iπ

4

[
2π

kr

] 1
2

= cos(
nα

ν
)e−ikr+ iπ

4

[
2π

kr

] 1
2

(10.3)

For the second integral I2, we take the phase to be f2(θ) = k cos(θ + α). The

stationary phase point must be the root of

f ′
2(θ) = −k sin(θ + α) = 0 (10.4)

or θ = −α,−α ± ı. The stationary point is at θ2 = π − α which is the the upper limit

of integration. Since

f ′′
2 (θ2) = −k cos(θ2 + α) = k > 0 (10.5)

I2 is approximately

I2(θ) ≈ 1

2
cos(

nθ2

ν
)e−ikr cos(θ2+α)− iπ

4

[
2π

kr

] 1
2

=
1

2
cos(

n(π − α)

ν
)eikr− iπ

4

[
2π

kr

] 1
2

(10.6)

Lastly for the third integral I3, the phase is f3(θ) = k cos(θ − α). The point of

stationary phase is found from

f ′
3(θ) = −k sin(θ − α) = 0 (10.7)

or θ = π,±π+α. Only the point θ3 = π+α is acceptable and coincides with the upper

limit of integration. Since

f ′′
3 (θ3) = −k cos(θ3 − α) = k > 0, (10.8)

I3 is approximately

I3(θ) ≈ 1

2
cos(

n(π + α)

ν
)eikr− iπ

4

[
2π

kr

] 1
2

(10.9)
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10.3 Two limiting cases

(1) A thin barrier. Let the wedge angle be 0 by setting ν = 2. Equation (10.37) then

becomes

φ(r, θ) = J0(kr) + 2
∞∑

n=1

e−i nπ
4 Jn/2(kr) cos

nα

2
cos

nθ

2
(10.10)

(see Stoker (1957)).

(2) An infinite wall extending from x = −∞ to ∞. Water occupying only the half

plane of y ≥ 0 and the wedge angle is 180 degrees. The diffracted wave is absent from

the solution, and the total wave is only the sum of the incident and reflected waves :

φ(r, θ) = e−ikr cos(θ−α) + e−ikr cos(θ+α) (10.11)

By employing the partial-wave expansion theorm, (Abramowitz and Stegun 1964), the

preceding equaion becomes

φ(r, θ) = 2

[
J0(kr) + 2

∞∑
n=1

(−i)nJn(kr) cosnα cosnθ

]
(10.12)

which agree with (10.37) for ν = 1.

For the animated version of the wave patterns for different wedge angles snd angle

of incidence, please visit the website.
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A Partial wave expansion

A useful result in wave theory is the expansion of the plane wave in a Fourier series

of the polar angle θ. In polar coordinates the spatial factor of a plane wave of unit

amplitude is

eikx = eikr cos θ.

Consider the following product of exponential functions

ezt/2e−z/2t =

[ ∞∑
n=0

1

n!

(
zt

2

)n
][ ∞∑

n=0

1

n!

(−z

2t

)n
]

∞∑
−∞

tn
[
(z/2)n

n!
− (z/2)n+2

1!(n+ 1)!
+

(z/2)n+4

2!(n+ 2)!
+ · · ·+ (−1)r (z/2)

n+2r

r!(n+ r)!
+ · · ·

]
.

The coefficient of tn is nothing but Jn(z), hence

exp

[
z

2

(
t− 1

t

)]
=

∞∑
−∞

tnJn(z).

Now we set

t = ieiθ z = kr.

The plane wave then becomes

eikx =
∞∑

N=−∞
ein(θ+π/2Jn(z).

Using the fact that J−n = (−1)nJn, we finally get

eikx = eikr cos θ =
∞∑

n=0

εni
nJn(kr) cosnθ, (A.1)

where εn is the Jacobi symbol. The above result may be viewed as the Fourier expan-

sion of the plane wave with Bessel functions being the expansion coefficients. In wave

propagation theories, each term in the series represents a distinct angular variation and

is called a partial wave.

Using the orthogonality of cosnθ, we may evaluate the Fourier coefficient

Jn(kr) =
2

εninπ

∫ π

0

eikr cos θ cosnθdθ, (A.2)

which is one of a host of integral representations of Bessel functions.
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B Approximate evaluation of an integral

Consider the integral ∫ 2π

0

dθ[1 + cos(θ − θo)]e
ikr(1−cos(θ−θo))

For large kr the stationary phase points are found from

∂

∂θ
[1− cos(θ − θo)] = sin(θ − θo) = 0

or θ = θo, θo + π within the range [0, 2π]. Near the first stationary point the integrand

is dominated by

2A(θo)e
ikt(θ−θo)2/2.

When the limits are approximated by (−∞,∞), the inegral can be evaluated to give

A(θo)

∫ ∞

−∞
eikrθ2/2dθ =

√
2π

kr
eiπ/4A(θo)

Near the second stationary point the integral vanishes since 1+ cos(θ− θo) = 1− 1 = 0.

Hence the result (8.5) follows.


