
1 

1 

1.1. VIBRATION OF A TAUT STRING 
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Notes by C. C. Mei


Chapter 1. SAMPLE WAVE PROBLEMS


To describe a problem in mathematical terms, one must make use of the basic laws 

that govern the elements of the problem. In continuum mechanics, these are the conser­

vation laws for mass and momentum. In addition, empirical constitutive laws are often 

needed to relate certain unknown variables; examples are equations of state, Hooke’s 

law between stress and strain, etc. 

To derive the conservation law one may consider an infinitesimal element (a line 

segment, area or volume element), yielding a differential equation directly. Alternately, 

one may consider a control volume (or area, or line segment) of arbitrary size in the 

medium of interest. The law is first obtained in integral form; a differential equation is 

then derived by using the arbitrariness of the control volume. The two approaches are 

completely equivalent. 

Let us first demonstrate the differential approach. 

Transverse vibration of a taut string 

Referring to Figure 1, consider a taut string stretched between two fixed points at x = 0  

and x = L. Let the cross-sectional area be S. If there is an initial stretching of ∆L, the  

initial tension T must be 
∆L 

T = ES 
L 

by Hooke’s law, where E is Young’s modulus. 

Now study the lateral displacement of the string from the initial position. By the law 

of conservation of transverse momentum, the total lateral force on the string element 

must be balanced by its inertia. Let the lateral displacement be V (x, t) and consider a 

differential element between x and x +dx. The net transverse force due to the difference 

of tension at both ends of the element is 

(T sin α)x+dx − (T sin α)x , 
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α 

V 
( Tsin α )x+dx p(x,t) 

dV 

x x+dx 0 L- (Tsin α)x x 

Figure 1: Deformation of a taut string 

where 
∂VdV ∂xsin α = √ = √ . 

dx2 + dV 2 
1 + (∂V )2 

∂x 

We shall assume the displacement to be small everywhere so that the slope is also small: 
∂V � 1. The local value of sin α can then be approximated by 
∂x ( )3

∂V ∂V 
+ O ,

∂x ∂x 

where the expression O(δ) stands for of the order of δ. For any smooth function f , 

Taylor expansion gives 

∂f 2f (x + dx) − f (x) =  dx + O (dx) ,
∂x 

where the derivative is evaluated at x. Hence the net tension is 

∂ ∂V 
T dx + O(dx)2 . 

∂x ∂x


The instantaneous length �(x, t) of the string from 0 to x is


∫ [ ( )2 
]1/2 [ ( )2 

] 
x ∂V ∂V 

� (x, t) =  dx 1 +  = x 1 +  O . 
∂x ∂x0 

It follows that ( )2
� − x ∂V 

= O for all 0 < x < L,  
x ∂x 

which is of second-order smallness. The string length, hence the tension, is essentially 
2unchanged with an error of O (∂V /∂x) , i.e., T can be taken as constant with a similarly 

small error. Thus the net tension in the string element is well represented by 

∂2V 
T dx. 
∂x2 
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If the mass per unit length of the string is ρ, the inertia of the element is ρ(∂2V/∂t2)dx. 

Let the applied load per unit length be p(x, t). Momentum conservation requires that 

∂2V ∂2V	 2ρdx = T dx + pdx + O (dx) . 
∂t2 ∂x2 

Eliminating dx and taking the limit of dx → 0, we get 

ρ ∂2V ∂2V p− = .	 (1.1)
T ∂t2 ∂x2 T 

This equation, called the wave equation, is a partial differential equation of the second 

order. It is linear in the unknown V and inhomogeneous because of the forcing term on 

the right-hand side. 

Is the longitudinal displacement U important in this problem? Conservation of 

momentum in the x direction requires that 

∂2U 
ρdx 

∂t2 
= (T cos α)x+dx − (T cos α)x . 

Since ( )2
dx 1	 ∂V∼cos α = √	 = √ = 1 +  O , ( )2(dx)2 + (dV )2 

1 + 	 ∂V ∂x 
∂x 

the acceleration is of second-order smallness ( (( ) ) 
ρ ∂2U ∂ ∂V 

)2 
∂V ρ ∂2V 

= O = O	 . 
T ∂t2 ∂x ∂x	 ∂x T ∂t2 

∂VHence U = O 
∂x V by twice integration with respect to t, and the longitudinal dis­

placement can be ignored. 

The differential equation (1.1) involves second-order derivatives with respect to both 

x and t. Two auxilliary conditions are needed for each variable. For example, at the 

initial instant, we may prescribe both the displacement and the velocity: 

V (x, 0) = f(x)	 (1.2) 

and 
∂V 

(x, 0) = g(x).	 (1.3)
∂t 
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1.2. VIBRATION OF AN ELASTIC ROD 

These statements are called the initial conditions. In addition we must also specify the 

boundary conditions at the ends. For a string stretched between two fixed ends, we 

require 

V (0, t) = 0  and  V (L, t) = 0. (1.4) 

Together with the partial differential equation, these auxilliary conditions define the 

initial-boundary-value problem. From the mathematical point of view, it is important 

to establish whether such a problem is well posed. This question involves the proof for 

the existence, uniqueness and stability of the solution. 

As seen in this example, Taylor expansion is used at almost every step of the deriva­

tion. Indeed, it is indispensable not only in deriving governing equations, but also in 

obtaining approximate solutions of the equations, and in analyzing the physical content 

of the solution. 

Note that the dimension of the coefficient T/ρ  is 

[ ] ( )2
T ML/t2 L 2 = = = [velocity] . 
ρ M/L t 

Now introduce the notation c = T/ρ  , which is a characteristic velocity of the physical 

problem. Equation (1.1) can then be written 

1 ∂2V ∂2V p− = , (1.5) 
c2 ∂t2 ∂x2 T 

which is called the wave equation arising in numerous contexts. 

Longitudinal vibration of an elastic rod 

Consider an elastic rod with the cross-sectional area S(x) and Young’s modulus E, as  

shown in Figure (2). Let the longitudinal displacement from equilibrium be U(x, t). 

The strain at station x is 
∆U ∂U 

lim = . 
∆x→0 ∆x ∂x 

By Hooke’s law, the tension at x is 
∂U 

ES . 
∂x 
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U U+dU 

0 
L 

x S 

x x+dx 

Figure 2: Longitudinal deformation of an elastic rod 

Now the net tension on a rod element from x to x + dx is 

ES
∂U − ES

∂U 
= dx 

∂ 
ES

∂U 
+ O (dx)2 . 

∂x ∂x ∂x ∂x x+dx x 

Let the externally applied longitudinal force be f(x, t) per unit length. Momentum 

conservation requires that 

∂2U ∂ 
( 

∂U 
) 

ρS dx = ES dx + fdx  + O(dx)2 . 
∂t2 ∂x ∂x 

In the limit of vanishing dx, we get the differential equation: 

∂2U ∂ 
( 

∂U 
) 

ρS = ES + f. (2.1)
∂t2 ∂x ∂x 

In the special case of uniform cross section, S = constant, and zero external force, 

then U satisfies the inhomogeneous wave equation 

1 ∂2U ∂2U f 
= + , (2.2) 

c2 ∂t2 ∂x2 ES

where c = E/ρ has the dimension of velocity. 

The simplest boundary conditions are for fixed or free ends. If both ends are fixed, 

then, 

U(0, t) = 0  and  U(L, t) = 0. (2.3) 

If the left end is fixed but the right end is free, then 

∂U 
U(0, t) = 0  and  (L, t) = 0, (2.4)

∂x 



∫ 

( ) 

1.3. TRAFFIC FLOW ON A FREEWAY 6 

since the stress is proportional to the strain. Again, the most natural initial conditions 

are 
∂U 

U(x, 0) = f(x), and (x, 0) = g(x), (2.5)
∂t 

where f and g are prescribed functions of x for 0 < x < L. 

Let us change to the integral approach in the next example. 

3  Traffic flow on a freeway  

One of the mathematical models of traffic flow is the hydrodynamical theory of Lighthill 

and Whitham (1958). It is a simple theory capable of describing many real-life features of 

highway traffic with remarkable faithfulness. Consider any section of a straight freeway 

from x = a to x = b, Figure 3. Assume for simplicity that there are no exits or entrances, 

and all vehicles are on the go. Let the density of cars (number of cars per unit length of 

highway) at x and t be ρ(x, t), and the flux of cars (number of cars crossing the point 

x per unit time) be q(x, t). By requiring that the number of cars within an arbitrary 

section from a to b be conserved, we have 

∂· b 

− ρ (x, t) dx = q (b, t) − q (a, t) . 
∂t a 

Rewriting the right-hand side ∫ b ∂q 
q (b, t) − q (a, t) =  dx , 

∂xa 

we get ∫ b ∂ρ ∂q
+ dx = 0  . (3.1)

∂t ∂xa 

Since the control interval (a, b) is arbitrary, the integrand must vanish, 

∂ρ ∂q
+ = 0. (3.2)

∂t ∂x 

This result can be argued by contradiction, which is a typical reasoning needed to change 

an integral law to a differential law. Suppose that the integrand is positive somewhere 

within (a, b), say, in the range (a′, b′) ∈ (a, b), and zero elsewhere in (a, b), then the 

integral in (1.3.1) must be positive. But this is a contradiction. The assumption that 
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q
(a) (b) 

x O ρ 
a b 

Figure 3: (a). A section of the freeway. (b). The relation between traffic flux rate and 

traffic density. 

the integrand is positive somewhere is therefore wrong. By a similar argument, the 

integrand cannot be negative anywhere, and hence must be zero everywhere in (a, b). 

Equation (1.3.2) is the law of conservation of cars. Having two unknowns q and ρ, a  

constitutive relation between ρ and q is needed and must be found by field measurements. 

Heuristically, q must be zero when there is no car on the road, and zero again when the 

density attains a maximum (bumper-to-bumper traffic), hence the relation between q 

and ρ must be nonlinear 

q = q (ρ) (3.3) 

as sketched in Figure 1.4.b. With this relation, (1.3.2) becomes 

∂ρ dq ∂ρ 
+ = 0. (3.4)

∂t dρ ∂x 

This result is a first-order nonlinear partial differential equation and will be used to 

deduce a variety of interesting phenomena of traffic flow. 

In all the examples studied so far the final governing equation involves only one 

unknown. Now we will examine a problem with several unknowns. 

Wave propagation in arteries 

We shall examine the pulsating flow of blood in an artery whose wall is thin and elastic. 

As a first exercise let us assume that there is only pulsation but no net flux. Because of 

the pressure gradient in the blood, the artery wall must deform. The elastic restoring 

force in the wall makes it possible for waves to propagate. 
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The artery radius a(x, t) varies from the constant mean ao in time and along the 

artery (in x). Let the local cross sectional area1 be S = πa2, and the averaged velocity 

be u(x, t). Consider a fixed geometrical volume between x and x + dx, through which 

fluid moves in and out. Conservation of mass requires 

∂S ∂(uS)
+ = 0, (4.1)

∂t ∂x 

Next the momentum balance. The time rate of momentum change in the volume must 

be balanced by the net influx of momentum through the two ends and the pressure force 

acting on all sides. The rate of mometum change is 

∂(ρuS) 
(4.2)

∂t 

The net rate of momentum influx is 

∂(ρu2S) ∂uS ∂u − dx = −ρu − ρuS (4.3)
∂x ∂x ∂x 

The net pressure force at the two ends is 

∂(pS) ∂p ∂S − = −S − p
∂x ∂x ∂x 

while that on the sloping wall is 

∂a ∂S 
2πa p = p

∂x ∂x 

The sum of all pressure forces is 
∂p−S (4.4)
∂x 

Balancing the momentum by equating (4.2) to the sum of a(4.3) and (4.4) we get, after 

making use of mass conservation (4.1), 

∂u ∂u ∂p
ρ + u = − (4.5)

∂t ∂x ∂x 

Let the pressure outside the artery be constant, say zero. The change in the tube 

radius must be caused by the change in blood pressure. Refering to Figure 4, the elastic 

strain due to the lengthening of the circumference is 2πda/2πa = da/a. Let  h be the 

1Denoted by A in Figure 4. 
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Figure 4: Forces on the artery wall. Note: The symbol for the cross- sectional 

area should be changed from A to S. 

artery wall thickness, assumed to be much smaller than a, and Young’s modulus E. The  

change in elastic force is 2Ehda/a which must be balanced by the change in pressure 

force 2a dp  , i.e., 
2Ehda 

= 2a dp,  
a 

which implies 
dp 
da 
= 
Eh 
a2 

or 
dp 
dS 

= 

√ 
πEh 
S3/2 

(4.6) 

Pressure increases with the tube radius, but the rate of increase is smaller for larger 

radius. Upon integration we get the equation of state 

√ √ 
p − po = −E(h/a) =  − πEh/ S. (4.7) 

Eq (4.5) may now be rewritten as 

S 
∂u 

+ u
∂u 

= − 
S ∂p 

= −C2 ∂S 
(4.8)

∂t ∂x ρ ∂x ∂x 

where C is defined by 

S dp Eh 
C = = (4.9)

ρ dS 2ρa 
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and has the dimension of velocity. In view of (4.6), equations (4.1) and (4.8) are a pair 

of nonlinear equations for the two unknowns u and S. 

Linearization: 

For infinitesimal amplitudes we can linearize these equations. Let a = ao + a′ with 

a′ � ao then the (4.1) becomes, to the leading order, 

∂a′ ao ∂u 
+ = 0 (4.10)

∂t 2 ∂x 

The linearized momentum equation is 

∂u ∂p
ρo = − (4.11)
∂t ∂x 

The linearized form of (4.6) is 
2Eh 

dp = 
2 
da′ (4.12) 

ao 

which can be used in (4.11) to get 

∂u Eh ∂a′ 
ρ = − (4.13)
∂t a2 ∂xo 

Finally (4.2) and (4.8) can be combined to give the wave equation: 

∂2a′ ∂2a′ 
= c 2 (4.14)

∂t2 o ∂x2 

where √ 
Eh 

co = (4.15)
2ρao 

Alternately one can eliminate a to get an equation for u 

∂2u ∂2u 
= c 2 (4.16)

∂t2 o ∂x2 

Because of (4.12), the dynamic pressure is governed also by 

∂2p 2 ∂
2p 

= c (4.17)
∂t2 o ∂x2 

All unknowns are governed by the same equation due to linearity and the fact that all 

coefficients are constants. 

Comments on linearization: 
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To find out the accuracy of linearization, it is useful to estimate first the scales of 

motion. Let A, T, L, U and P denote the scales of a′, t, x, u  and p′ respectively. It is 

natural to take L = coT . From (4.1), (4.6) and (4.5) we get the relations among the 

scales of dynamical quantities 

aoA Ua2 
o A L 

= , hence U = 
T L ao T 

EhA 
P = 

2ao 

U 1 P 1 1 EhA 
= = 

T ρ L ρ L/T a2 
o 

It follows that 
A L 1 1 EhA 

= 
ao T 2 ρ L a2 

o 

hence, 
L2 Eh 2 = = c 
T 2 ρao

o 

With these scales the ratio of a typical nonlinear term to a linear term is 

u ∂u U2/L U A∂x ∼ = = 
∂u U/T L/T ao∂t 

Hence the condition for linearization is that 

A � 1 
ao 

5 Shallow water waves and linearization 

5.1 Nonlinear governing equations 

If water in a lake or along the sea coast is disturbed, waves can be created on the surface, 

due to the restoring force of gravity. Consider the basic laws governing the motion of long 

waves in shallow water of constant density and negligible viscosity. Referring to Figure 

5, let the z axis be directed vertically upward and the x, y plane lie in the initially calm 

water surface, h(x, y) denote the depth below the still sea level, and ζ(x, y, t) the vertical 

displacement of the free surface. Take the differential approach again and consider the 

fluid flow through a vertical column with the base dxdy. 
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First, the law of mass conservation. The rate of volume increase in the column 

∂ζ 
dxdy

∂t 

must be balanced by the net volume flux into the column from all four vertical sides. In 

shallow water, the horizontal length scale, characterized by the wavelength λ, is  much  

greater that the vertical length h. Water flows mainly in the horizontal planes with 

the velocity u(x, y, t), which is essentially constant in depth. Through the vertical sides 

normal to the  x axis, the difference between influx through the left and outflux through 

the right is 

∂ − [u (ζ + h) |x+dx − u (ζ + h) |x] dy = − [u (ζ + h)] + O(dx) dxdy. 
∂x 

Similarly, through the vertical sides normal to the y axis, the difference between influx 

through the front and outflux through the back is 

∂ − [v (ζ + h) |y+dy − v (ζ + h) |y] dx = − 
∂y 
[v (ζ + h)] + O(dy) dydx. 

Omitting terms of higher order in dx, dy, we invoke mass conservation to get 

∂ζ ∂ ∂ 
dxdy = − [u (ζ + h)] + [v (ζ + h)] + O(dx, dy) dxdy. 

∂t ∂x ∂y 

In the limit of vanishing dx, dy, we have, in vector form, 

∂ζ 
+ ∇ · [u(ζ + h)] = 0. (5.1)

∂t 

This equation is nonlinear because of the quadratic product of the unknowns u and ζ. 

z 

z=ζ ζ 

O x 

z=-h dy 
dx 

Figure 5: A column element of fluid in a shallow sea
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Now the law of conservation of momentum. In shallow water the vertical momentum 

balance is dominated by pressure gradient and gravity, which means that the distribution 

of pressure is hydrostatic: 

p = ρg (ζ − z) , (5.2) 

where the atmospheric pressure on the free surface is ignored. Consider now momentum 

balance in the x direction. The net pressure force on two vertical sides normal to the x 

direction is 

∂ ζ ∂ ζ 

dxdy p dz  = −dxdy ρg(ζ − z) dz 
∂x −h ∂x −h 

∂(ζ + h) 
= −ρg(ζ + h) dxdy. 

∂x 

The hydrodynamic reaction from the sloping bottom to the fluid is 

∂h ∂h −p dxdy = ρg(ζ + h) dxdy. 
∂x ∂x

The change of fluid momentum consists of two parts. One part is due to the time rate 

of momentum change in the water column 

∂ 
[ρu(ζ + h)] dxdy, 

∂t 

and the other is due to the net flux of momentum through four vertical sides: 

∂ ∂ 
[ρu2(ζ + h)]dxdy + [ρuv(ζ + h)]dydx. 

∂x ∂y 

Equating the total rate of momentum change to the net pressure force on the sides and 

on the bottom, we get 

∂ ∂ ∂ 
[ρu(ζ + h)] + [ρu2(ζ + h)] + [ρuv(ζ + h)]

∂t ∂x ∂y 
∂(ζ + h) ∂h 

= −g(ζ + h) + g(ζ + h) . 
∂x ∂x 

The left-hand side can be simplified to 

∂u ∂u ∂u ∂ζ ∂ ∂ 
ρ + u + v (ζ + h) +  ρu + [u(ζ + h)] + [v(ζ + h)]

∂t ∂x ∂y ∂t ∂x ∂y 
∂ζ ∂u ∂u 

= ρ + u + v (ζ + h)
∂t ∂x ∂y 
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by invoking continuity (5.1). Hence the x momentum equation reduces to 

∂u ∂u ∂u ∂ζ 
+ u + v = −g . (5.3)

∂t ∂x ∂y ∂x 

Similarly, momentum balance in the y direction requires


∂v ∂v ∂v ∂ζ 
+ u + v = −g . (5.4)

∂t ∂x ∂y ∂y 

These two equations can be summarized in the vector form: 

∂u 
+ u · ∇u = −g∇ζ.  (5.5)

∂t 

Equations (5.1) and (5.5) are coupled nonlinear partial differential equations for three 

scalar unknowns u and ζ. 

Now the boundary and initial conditions. On a shoreline S, there can be no normal 

flux, therefore, 

hu · n = 0  on  S, (5.6) 

where n denotes the unit normal vector pointing horizontally into the shore. This 

condition is applicable not only along a cliff shore where h is finite, but also on a 

shoreline where h = 0, as long as the waves are gentle enough not to break. In the latter 

case the whereabout of the shoreline is unknown a priori and must be found as a part 

of the solution. 

At the initial instant, one may assume that the displacement ζ(x, y, 0) and the ver­
∂tical velocity of the entire free surface 
∂t
ζ(x, y, 0) is known. These conditions complete 

the formulation of the nonlinear shallow water wave problem. 

5.2 Linearization for small amplitude 

For small amplitude waves 
ζ A ∼ � 1, (5.7)
h h 

where A is the characteristic amplitude. Equation (5.1) may be simplified by neglecting 

the quadratic term 
∂ζ 
+ ∇ · hu = 0. (5.8)

∂t 
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Denoting the time scale by the wave period T and the horizontal length scale by the 

wavelength λ, we equate the order of magnitudes of the remaining two terms above to 

get 
A uh A uT 
T 

∼ 
λ 
, implying 

h 
∼ 

λ 
� 1. 

Now let us estimate the importance of the quadratic term u · ∇u in the momentum 

equation by assessing the ratio 

u · ∇u uT 
= O � 1.

∂u λ 
∂t 

Clearly the quadratic term representing convective inertia can also be ignored in the 

first approximation, and the momentum equation becomes 

∂u 
= −g∇ζ.  (5.9)

∂t 

Both the continuity (5.1) and momentum (5.5) equations are now linearized. 

In view of (5.9) the boundary condition on the shoreline (5.6) can be expressed, 

instead, as 
∂ζ 

h = 0  on  S. (5.10)
∂n 

Consistent with the linearized approximation, the shoreline position can be prescribed 

a priori. 

Equations (5.8) and (5.9) can be combined by the process of cross differentiation. 

First differentiate (5.8) with respect to t, 

∂ ∂ζ 
+ ∇ · (uh) = 0,

∂t ∂t 

then take the divergence of the product of (5.9) and h, 

∂u ∇ ·  h = −∇(gh∇ζ). 
∂t 

The difference of these two equations gives 

∂2ζ 
∂t2 

= ∇ · (gh∇ζ). (5.11) 

For a horizontal bottom h = constant, 

1 
c2 

∂2ζ 
∂t2 

= ∇2ζ,  (5.12) 
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√ 
where c = gh = O(λ/T ) is the characteristic velocity of infinitesimal wave motion. 

Equation (1.6.12) is the two-dimensional extension of the wave equation. If, furthermore, 

all conditions are uniform in the y direction, ∂/∂y = 0, (5.12) reduces to the familiar 

form 
1 ∂2ζ ∂2ζ 

= . (5.13) 
c2 ∂t2 ∂x2 

Sound in fluids 

The basic equations governing an inviscid and compressible fluid are as follows. Mass 

conservation: 
∂ρ 
+ ∇ · (ρu) = 0 (6.1) 

∂t 

Momentum conservation: 
∂u 

ρ + u · ∇u = −∇p (6.2)
∂t 

We  must  add an equation of state  

p = p(ρ, S) (6.3) 

where S denotes the entropy. When no temperature gradient is imposed externally and 

the gradient of the flow is not too large, one can ignore thermal diffusion. The fluid 

motion is then adiabatic; entropy is constant. As a result p = p(ρ, So) depends only on 

S 

the density. Eq. (6.1 ) can be written as ( ) ( ) 

ρ 
∂u 
∂t 
+ u · ∇u = − 

∂p 
∂ρ S 

∇ρ (6.4) 

We shall denote √ ( ) 

C = 
∂p 
∂ρ 

(6.5) 

so that 
∂u 

ρ + u · ∇u = −C2∇ρ (6.6)
∂t 

It is easy to check that C has the dimension of velocity. 

From thermodynamics we also have 

∂p ∂p 
= γ (6.7)

∂ρ ∂ρS T 



( ) 

( ) ( ) 

( ) 

( ) 

17 1.6. SHALLOW WATER WAVES 

where T is the temperature and γ = cp/cv = ratio of specific heats. 

For a perfect gas the equation of state is 

p = ρRT (6.8) 

where R is the gas constant. Hence for a perfect gas 

∂p 
= γRT (6.9)

∂ρ S 

Liquids are much less compressible. One usually writes the equation of state as 

∂ρ ∂ρ 
dρ = dp + dT (6.10)

∂p T ∂T p 

Denoting 
1 ∂ρ 

β = − (6.11)
ρ ∂T p 

as the coefficient of thermal expansion and 

1 ∂ρ 
κ = (6.12)

ρ ∂p T 

as the coefficient of isothermal compressibility. Usually β is small and κ much smaller. 

Under isothermal conditions it is κ that counts. 

The simplest limit is the case where the background density ρo and pressure ∂o are 

uniform, the fluid is at rest and the dynamic perturbations are infinitesimally small. We 

can write 

p = po + p ′, ρ  = ρo + ρ′ (6.13) 

with ρ′ � ρo and p′ � po, and linearize the equations to 

∂ρ′ 
+ ρo∇ · u = 0 (6.14)

∂t 

and 
∂u 1 ′ = − ∇p (6.15)
∂t ρo 

Taking the curl of the second, we get 

∂ ∇× u = 0 (6.16)
∂t 
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thus the velocity field is irrotational if it is so initially. We can introduce a potential φ 

by 

u = ∇φ (6.17) 

It follows from the momentum equation 

∂φ 
p ′ = −ρo (6.18)

∂t 

Using these we get the wave equation. 

∂2φ 
= co

2∇2φ (6.19)
∂t2 

where 
∂po 

co 
2 = (6.20)

∂ρo S 

Flexural waves in a beam on an elastic foundation 

Referring to Figure (7), we first describe the momentum conservation of a thin beam. 

Assume the beam to have a horizontal axis when it is not loaded and to have uniform 

z 
δV 
δx 

z 

U 

U 

Figure 6: Deflection of a beam 

material properties. Let V (x) denote the upward deflection of the beam axis. If the 

thickness is small compared to the length and the deflection small compared to the 

thickness, a plane cross section remains approximately plane after deformation. Hence, 

the longitudinal displacement U at section x and height z above the axis is proportional 

to z and to the tilt angle ∂V /∂x 

U ∼ ∂V 
= −z . 

∂x 
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figure 

p dx 

S+ δSdx M+δMdx 
M δ xS δx 

k V dy 

Figure 7: Forces and moments on a beam segment from x to x + dx. 

Consequently, the strain is 
∂U ∂2V 

εx = 
∂x 

= −z 
∂x2 

and the longitudinal stress is 

∂U ∂2V 
σx = E 

∂x 
= −Ez 

∂x2 
, (7.1) 

where E is Young’s modulus. The total moment about the mid-section z = 0 due to 

the stress distribution across the section is 

M = − 
∫ h/2 

−h/2 
σxzdz = E 

∂2V 
∂x2 

∫ h/2 

−h/2 
z 2dz = EI 

∂2V 
∂x2 

, (7.2) 

where ∫ h/2 

I = z 2dz 
−h/2 

is the moment of inertia of the cross section with respect to its mid-section z = 0.  Con­

sider a length element of the beam from x to x+ dx, The balance of angular momentum 

about the center of the element requires that 

∂M 
( 

∂S 
) 
dx dx ∂3V 

M + dx − M + S + dx + S = ρJdx ,
∂x ∂x 2 2 ∂x∂t2 

where ρ is the mass and ρJ is the rotatory moment of inertia per unit length of the 

beam. For a beam with rectangular cross section, J = h2/12, where h is the height of 
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the beam. Thus, 

∂M ∂3V ∂3V ∂3V 
S = − + ρJ = −EI + ρJ . (7.3)

∂x ∂x∂t2 ∂x3 ∂x∂t2 

On the other hand, balance of vertical forces requires that 

∂S ∂2V 
S + dx − S = p dx  + kV dx + ρ ,

∂x ∂t2 

where k is the elastic constant of the lateral support, and p(x, t) is the distributed load. 

Making use of (7.3), we get 

∂2 ∂2V ∂4V 
ρ 1 − J + EI + kV = −p(x, t), (7.4)

∂x2 ∂t2 ∂x4 

which is a fourth-order partial differential equation, derived first by Lord Rayleigh. If the 

wavelength L is much greater than the beam height h/L� � 1, then the term representing 

rotatory inertia is negligible and (7.4) may be simplified to 

∂2V ∂4V 
ρ + EI + kV = −p(x, t). (7.5)
∂t2 ∂x4 

Now the boundary conditions. For a beam of finite length, each end can be free, clamped, 

or supported on a hinge. At a free end, there is neither torque nor shear 

∂2V ∂3V 
= 0, = 0. (7.6)

∂x2 ∂x3 

At a clamped end, the deflection and slope must vanish 

∂V 
V = 0, = 0. (7.7)

∂x 

At a hinged end both the deflection and the torque are zero 

∂2V 
V = 0, = 0. (7.8)

∂x2 

For an infinitely long beam, the boundary conditions at infinity depend on the loading. 

For a transient loading with finite duration, V should vanish at infinities. For time-

harmonic loadings, the disturbance should at most be outgoing waves. 
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8 Homework No.1 

1. A membrane is kept taut over an area S. The membrane has a constant density ρ per 

unit area and is under uniform tension in all directions. Derive the governing equation 

for the lateral displacment u(x, y, t) of the membrane vibrating under distributed loading 

of p(x, y, t) per unit area. 

2. Consider the longitudinal vibration of a cylindrical rod with one end at x = 0  

fixed and the other end at x = L attached to a mass M . Before t = 0  the  rod  is  

compressed by the length εL with ε � 1. At t = 0 the compression is released. State 

the goverining equation and all boundary and initial conditions. 

3. Condsider the torsional vibration of a cylindrical rod of circular cross section of 

radius a. Let  θ(x, t) = angular displacement of the cross section at x, dσ = area element 

in the cross section and located a the distance r from the axis, see figure 8. Let τ be 

the shear stress, G the shear modulus of elasticity , and φ the angular displacment of a 

line orginally parallel to the axis. Show that 

∂θ 
φ = r (8.1)

∂x 

Invoke Hooke’s law τ = Gφ and show that the total torqure aplied to the cross section 

at x is 
∂θ ∂θ 

M = G r 2dσ = GJ (8.2)
∂x S ∂x 

where 

J = r 2 dσ (8.3) 
S 

is the polar moment of inertia of the cross section. Let I be the moment of inertia per 

unit length of the rod. Show that 

∂2θ GJ ∂2θ 
∂t2 

= 
I ∂x2 

(8.4) 

4. (a). Derive equations (6.1) and (6.2) for a compressible fluid. Use differential 

argument. For small-amplitude oscillations these equations can be linearized for exam­

ining the propagation of sound. Sound waves in air and water are different because of 

the difference in equations of state: p = p(ρ). 
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z 
dσ 

a 
A 

A’r 
d θ 

x yO 

A’ 
A 

φ 

Figure 8: Torsion of a circular cylinder 

(b). During an earthquake, water in a reservoir exerts hydrodynamic pressure on a 

dam that may fail. Formulate the dam-reservoir interaction problem under the following 

idealizations. The reservoir is infinitely long and has a uniform rectangular cross section. 

Water is present only on one side of the dam (x >  0) and has the constant depth h. 

Before t = 0, all is calm. After t = 0 the dam is forced to vibrate horizontally so that  

u(0, y, z, t) =  
 uo(y, z, t) = prescribed, 0 < t < T,  

(8.5)  0,  t > T.  

The free surface is exposed to constant atmospheric pressure. The reservoir bottom is 

rigid and does not vibrate vertically (!!!). Neglect gravity but consider compressibility 

of water because of the high frequency (∼ O(100)Hz). Express all governing equa­

tions including the boundary conditons in terms of the velocity potential φ defined by 

(u, v, w) =  ∇φ. 


