Fluid statics

$$-\overline{\nabla}P + \rho\overline{g} = \rho\overline{a}$$

with gravity, $\overline{g} = g\hat{k}$ & no acceleration

$$P(z) = P_o + \rho gz$$

Acceleration

with gravity, $\overline{g} = -g\hat{j}$ & an acceleration, $\overline{a} = a\hat{i}$

$$P(x,y) = -\rho ax - \rho gy + P_o$$

$$\tan\theta = \frac{a}{g}$$

Buoyancy

$$F_B = \rho g V$$

where $\,\rho\,$ is the density of a displaced liquid, and $\,V\,$ is the volume of a displaced liquid.

Surface Tension

Young-Laplace equation

For a curved liquid-air interface, defined by two radii of curvature, $\,^{R_{_{1}}}$ & $\,^{R_{_{2}}}$

$$P_i - P_o = \sigma \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

Contact angle, θ

$$\cos\theta = \frac{\sigma_{SG} - \sigma_{SL}}{\sigma_{LG}}$$

1

MIT OpenCourseWare http://ocw.mit.edu

2.06 Fluid Dynamics
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.