2.035: Midterm Exam - Part 1
Spring 2007
SOLUTION

PROBLEM 1:

a) A wvector space is a set V of elements called vectors together with operations of addition and
multiplication by a scalar, where these operations must have the following properties:

(A) Corresponding to every pair of vectors @,y € V there is a vector in V, denoted by x +y,
and called the sum of x and y, with the following properties:
(1) x+y=y+xforal xz,ycV,
(2) z+(y+2z)=(x+y)+zforalaxyzcV,

(3) there is a unique vector in V, denoted by o and called the null vector, with the
property that * + o0 = x for all x € V; and

(4) corresponding to every vector & € V there is a unique vector in V, denoted by —x
with the property that  + (—x) = o.

(B) Corresponding to every real number a € R and every vector & € V there is a vector in
V, denoted by ax, and called the product of o and @, with the following properties:

(5) a(fx) = (af)x for all a, f € R and all x €V,
(6) a(x+y) =ax+ay for all « € R and all x,y € V;
(7) (a+ B)x = ax + Pz for all o, € R and all ¢ € V; and
(8) 1z =« for all x € V.
b) A set of vectors { f,, fa,..., f,,} is said to be linearly independent if the only scalars a, g, . . ., @y
for which

afy + asfy.. tonf, =
are ] = ag = ...=aqay, = 0.

c) If a vector space V contains a linearly independent set of n (> 0) vectors but contains no
linearly independent set of n + 1 vectors we say that the dimension of V is n.

d) If V is a n-dimensional vector space then any set of n linearly independent vectors is called a
basis for V.

e) If {f1, fa,-.., f,} is a basis for an n-dimensional vector space V, then any vector & € V can
be expressed in the form

$:£1f1+£2f2+"'+£nfn

where the set of scalars &1, &2, ..., &, is unique and are called the components of @ in the basis

{f13f27"'7.fn}'



f)

To every pair of vectors x,y € V we associate a real number denoted by x - y and called the
scalar product of  and y provided that this product has the following properties:

(9)
(10)
(11)

)

(12) @ -x > 0 for all vectors « # o in V.

y=y- xforall z,y eV,

w-
(x+y) - z=x-z+y-zforall x,y,z €V,
(

ax) -y = a(x - y) for all @ € R and all vectors x,y € V; and

1/2
The real number denoted by |z — y| and defined as |z — y| = ((az —y) - (x— y)) is called
the distance between the vectors & and y.
If {e1,ea,...,e,} is a basis for an n-dimensional vector space and if
[0 if i#y, .
ez.ej_{1 i ,5=1,2,...n,
we say that {e1,es,...,e,} is an orthonormal basis.

A linear transformation A on a vector space V is a transformation that assigns to each vector
x € V a unique vector in V which we denote by Ax with the properties:

(13) A(x +vy) = Az + Ay for all vectors x,y € V; and

(14) A(ax) = a(Ax) for every a € R and every vector € V.

Let S be a subset of a vector space V. Suppose further that S itself is in fact a vector space on
its own right under the same operations of addition and scalar multiplication as in V. Then

S is said to be a subspace of V. Finally, suppose in addition that Az € S for all x € S. Then
we say that S is an invariant subspace of A.

The set N of all vectors  for which Ax = o is called the null space of A.
A linear transformation A is said to be singular if there is a vector & # o for which Az = o.
The n? real numbers A;; defined by
Aij = e;- Ae;
are called the components of the linear transformation A in the basis {ej, e, ..., e,}.

A scalar valued function ¢ defined on the set of all linear transformations is said to be a scalar
invariant if ¢(QAQT) = ¢(A) for every linear transformation A and all orthogonal linear
transformations Q.



PROBLEM 2:

a)

Consider the set V of all 2 x 2 matrices x of the form

rr T2
xr =
T2 I

where x; and x2 range over all real numbers; let

o= (03)

be the null vector; and define addition,  + y, and scalar multiplication, aa, in the natural
way by

<x1 xz>+(y1 y2):<x1+y1 xz+yz> a<:f:1 xz>:<owc1 owcz)
T2 T Y2 r2tye w1ty )’ T2 Ty azy ary )
One can verify that all of the requirements (1)—(8) of Problem 1 are satisfied by these opera-

tions, and moreover, that © 4+ y and ax are both in V when x,y € V and o € R. Thus V is
a vector space.

Consider the following two vectors f; and f,:

(L) ne(10)

One can readily verify that if a1 f1 +aofy = 0, then necessarily a1 +2a9 = 0 and 2a; +ag = 0
which in turn implies that a1 = ag = 0. Thus {f,, f»} is a linearly independent set of vectors.

Consider the following three vectors fi, fq, T,

1 2 2 1 T T2
n=(a1) ae(1e) == (nh)

where « is an arbitrary vector in V. One can readily verify that if a3 f; + asfy + azx = o
then necessarily aq + 2ao + z1a3 = 0 and 2a; + ag + zoag = 0. Observe that the choice
1

a1 = §(2$2 — 331), a9 = §<2x1 — 1’2), a3 = -1

satisfies these two scalar equations. Thus if a;f; + asfy + azx = o this does not require
that all the a’s vanish and so {f, fo,} is a linearly dependent set of vectors. Recall that
{f1, f2} is a linearly independent set of vectors. Thus the dimension of V is 2.

Since V is a 2-dimensional vector space and since the set of vectors {f, fo} is linearly
independent, it follows that {f;, f5} is a basis for V.

Consider the basis {f, f5} and let & be an arbitrary vector in V. Then one can readily verify
that

1 1
x=4Ff+&F, where & = §(2$2 —x1) and & = §(2x1 — x9)

are the components of x in the basis {f;, fs}-



f)

Corresponding to any two vectors ¢,y € V, where
T T2 Y1 Y2
€r = =
<$2 371)’ Y <y2 yl)’
tentatively define their scalar product as

T -y =2x1Yy1 + r2Y2.

One can verify that this definition satisfies all of the requirement (9)—(12) of Problem 1 and
therefore is in fact a legitimate definition of a scalar product.

The distance between the two vectors
r1 T2
SRR
T2 X1 Y2

2—yl= (@) @-u)" = (@ -0+ @ w?)

(10 /(01
“=\o1) 7{10)

Observe that e; - ea = 0,|e1| = |ea| =1 and so {ej, e2} forms an orthonormal basis for V.

is
1/2

Consider the two vectors

Consider a transformation A that takes the vector

r1 X9 . Tro9 I
r = into the vector Az =
T2 I xr1 X2

One can verify that the requirements (13), (14) of Problem 1 are satisfied, and moreover that
Az €V for all x € V. Therefore A is a linear transformation.

Consider the set S of all vectors « of the form

xr =
T T
where z ranges over all real numbers. Clearly S is a subset of V. Moreover, one can verify that
S itself is a vector space on its own right under the same operations of addition and scalar
multiplication as in V. Thus S is a subspace of V. Furthermore, observe that Ax = x for all

vectors @ € S, so that in particular Az € S for all x € S. Thus S is an invariant subspace of
A. (In fact it is a one-dimensional invariant subspace associated with the eigenvalue +1).

From item (i) we see that if Az = o then necessarily * = o. Thus the null space of A is
comprised of a single vector, the null vector: N = {o}.

As noted in the preceding item, Ax = o implies that necessarily & = o. Therefore A is
nonsingular.



m) Observe from the definitions of A,e; and ey that Ae; = ey and Aes = e;. Thus the
components of A in the basis {e;, ez} are

Al =e1-Ae; =e;-ex =0, Aip=e1-Aexy =e;- e =1,
A22:62-A62:62'61:0, A21:62'A61:€2-62:1.
n) Consider the scalar-valued function ¢(A) = det A defined for all linear transformations

A. Then for any linear transformation A and any orthogonal transformation ¢ we have
H(QAQT) = det(QAQT) = det(Q) det(A) det(QT) = det(Q) det(A) det(Q) = (£1)%>det A =
det A. Thus the function ¢(A) = det A has the property that ¢(QAQT) = ¢(A) for every
linear transformation A and all orthogonal linear transformations Q. Thus det A is a scalar

invariant of A.



