1.685J/2.034J/18.377J Nonlinear Dynamics and Waves Spring 2007

Problem Set No. 2

Out: Thursday, March 1, 2007
Due: Thursday, March 15, 2007 in class

Problem 1
The cylinder rolls back and forth without slip as shown in the figure below.

(a) Show that the equation of motion can be written in the form

i+l —11+2>) "z =0
where w? = 2k/3M and [ is the free length of the spring. All lengths were made dimen-
sionless with respect to the radius r.
(b) Sketch the potential energy as a function of z for
(i)1<1
(i) 1 > 1
Show the equilibrium positions and indicate whether they are stable or unstable.

(c) For | = /2, obtain a two-term frequency-amplitude relationship for small oscil-

lations around the equilibrium position.
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Problem 2
Consider a simple pendulum with a dashpot as shown below.

(a) Show that the equation of motions is
mil16 = —mgsin@ — iml,0 cos?(8 — 6).
Then show that (1) can also be written as

fi(ly +12)? sin” 0 J—0
l% + 2[1([1 + 12)(1 — COS 9) e
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(b) Expanding and retaining through the cubic terms, show that (2) becomes

0+ w?(1 — %92)9 + 20626 = 0

where



il +1p)?
2u = — 0 (4)
2
Using (3), obtain the following first approximation for  when the amplitude of the

motion is small but finite:
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where ag and [y are constants of integration. Note that p is not small and that in this
case the frequency is affected by the damping in the first approximation. As a check, show

that in the limit as 4 — 0 equation (5) reduces to

6 = ag cos|w(1 — % ad)t + o). (6)

Problem 3

The response of a nonlinear system to harmonic excitation is governed by the following

equation:

Q
&+ 2¢E|@| + = + Bex® = cos —t,
wo

where Q/wg =~ 1. Assume light damping (( < 1) and weak nonlinearity (0 < € < 1) with
p=0(1).

(a) Find the appropriate scaling of the small parameter ¢, in terms of €, so that light
damping and weak nonlinearity balance. What is the width and height of the resonance

peak in terms of €?

(b) Under the assumptions in (a), derive evolution equations for the response. Which
method out of the three we learned in class (Poincaré-Lindstedt, multiple scales, averaging)

is best suited for this problem? Why?

(c) Obtain the frequency-response equation. Is there a jump phenomenon associated

with this motion? Is this motion bounded?



Problem 4

A two-degree-of-freedom system is governed by the following coupled (dimensionless) equa-

tions

d’z 9

a2 + wiz =y,
d%y

i wiy = €2Pa3,

subject to initial conditions

2(0) =20,  y(0) =wo, #(0) = o, H(0) = vo.

Here € is a measure of nonlinearity and g is an O(1) parameter.

In the limit € — 0 and away from resonance (w; 7# ws), the linear response of this

system consists of two harmonics with frequencies w; and wa:

Vo .
y(t) = yo cos wat + — sinwst,
w2

y(t) 1 < V0 ) . < Yo )
z(t) = "+ —|(ug— ———= | sinwit+ | rg — ———5 ] coswit.
W)=zt o\t~ g ) stnwrt + (@0 = 555 J cosw

Note that in this expression z(¢) becomes unbounded at resonance (wy = ws).

Your job is to construct a uniformly valid expansion that describes the weakly non-

linear (0 < € < 1) response of this system near resonance conditions (w; & ws).

Clue: Based on the linear response exactly at resonance (w; = ws), use a ‘naive’
expansion to deduce the timescale on which nonlinear effects come into play as well as the

appropriate re-scaling of z and y near resonance.



