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Some Important Power 
Sources
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Characteristics of Power Systems 
for Marine Applications

• “Main Supply” of power – energy source must be 
carried on board; has to last days, months, 
years.

• Weight and volume constraints *may* be 
significantly reduced compared to terrestrial and 
esp. aeronautical applications.  

• Reliability and safety critical due to ocean 
environment.

• Capital cost, operating costs, life cycle analysis, 
emissions are significant in design, due to large 
scale.
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This Lecture
• Fuel Engines

– Characteristics of typical fuels; combustion
– Internal combustion engines
– Brayton cycle (gas turbine) engines

• Batteries and Fuel Cells
– Electrochemical processes at work
– Canonical battery technologies
– Fuel cell characteristics

• NOT ADDRESSED:  Nuclear power sources, 
renewable energy, emissions, green 
manufacturing, primary batteries, generators … !
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Reaction for gasoline:
4 C8 H15 + 47 O2  30 H2 O + 32 CO2 + other products

Fuel

Heat 
Content 
MJ/kg

Gasoline*:
C8 H15

45

Diesel*:
C13 H23

42

Propane:
C3 H8

48

Hydrogen:
H2

130

Ethanol:
C2 H5 0H

28

Engines transform chemical 
energy into heat energy into 
mechanical or kinetic energy.

1 MegaJoule is:
1 kN force applied over 1 km;
1 Kelvin heating for 1000 kg air;
1 Kelvin heating for 240 kg 

water;
10 Amperes flowing for 1000 

seconds at 100 Volts

*Approx.:  complex mixtures
Pulkrabek, p. 444
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Otto and Diesel Cycles

[pressure * volume]  = 
N/m2 * m3/kg = 
Nm/kg = 
Energy/mass 

volume

pr
es

su
re

Pulkrabek p. 88, 111.

IDEAL
OTTO Typical

Otto

Turbocharger

CW area 
enclosed:
Specific work!

TDC

BDC

4 & 6-stroke engines

Diesel

Four-stroke engine: 1:  TDC to BDC, bring air into cylinder
2:  BDC to TDC, compress air
ADD FUEL and IGNITE!
3:  TDC to BDC, expand heated air (power stroke)
4:  BDC to TDC, blow out products of combustion

Typical ICE 
efficiency to 
BHP:  30%

Typical power 
density: 0.05- 
0.4 kW/kg



GE LM2500 
gas turbine:
22kW for 
marine 
propulsion
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Photo of the 9H rotor 
removed due to copyright restrictions.

Photo of a LM2500 gas turbine 
removed due to copyright restrictions.

http://www.power-technology.com/projects/baglan/images/9H.jpg
http://web.archive.org/web/20061012150852/www.aircraftenginedesign.com/pictures/LM2500.gif


Massachusetts Institute of Technology 2.019

LM2500 Specifications - Quoted
“ Output: 33,600 shaft horsepower (shp) 

Specific Fuel Consumption: 0.373 lbs/shp-hr 
Thermal Efficiency: 37% 
Heat Rate: 6,860 Btu/shp-hr 
Exhaust Gas Flow: 155 lbs/sec 
Exhaust Gas Temperature: 1,051°F 
Weight: 10,300 lbs 
Length: 6,52 meters (m) 
Height: 2.04 m 

Average performance, 60 hertz, 59°F, sea level, 60%   
relative humidity, no inlet/exhaust losses, liquid fuel, 
LHV=18,400 Btu/lb  ”

http://www.geae.com/aboutgeae/presscenter/marine/marine_200351.html
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Brayton cycle

Specific volume

P
re

ss
ur

e Combustion

C
om

pr
es

si
on Expansion through compressor turbine

(Expansion through jet nozzle:  thrust)

Expansion through power turbine

Giampaolo, p. 46, 52

Compressor Combustor Compressor 
turbine

Power turbine 
(or nozzle)

Working 
fluid in Exhaust

same shaft

Pressure

Typical GT efficiency to SHP:  35%
Typical power density (large engines): 5 kW/kg  

(single spool)
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Battery Technologies
Electrochemical Cells

_

electrolyte bath: 35% 
sulfuric acid solution 
saturated with PbS04

+ ion migration

- ion migration

+

electrons

Total Chemistry of the Lead-Acid battery:
Pb + PbO2 + 2 S04

2- +  4H+ 2 PbSO4 + 2 H2 O

Lead-acid battery has two electrode reactions 
(discharge):

Releasing electrons at the negative electrode:

Pb  Pb2+ + 2e- (oxidized)
or
Pb + S04

2-  PbSO4 + 2e-

Gathering electrons at the positive electrode:

Pb4+ + 2e-  Pb2+ (reduced)
or
PbO2 + SO4

2- + 4H+ + 2e-  PbSO4 + 2H2 O

Berndt, p. 36, 43
Theoretical limit of lead-acid energy density:  0.58MJ/kg

cathodeanode
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Overall Discharge Dependence on 
Current and Temperature

Discharge capacity

Osaka & Datta, p. 30, 61, 63

100%

1C
0.2C

4C

8C

100%

293K
333K

273K

253K

Nominal discharge rate C is capacity of battery in Ah, divided by
one hour (typical).

Some variation of shapes among battery technologies, e.g.,   
lithium lines more sloped. 

V
ol

ts
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Image removed due to copyright restrictions.
Please see Fig. 3 in Rutherford, K., and D. Doerffel.
"Performance of Lithium-Polymer Cells at High Hydrostatic Pressure."
Proceedings of the Symposium on Unmanned Untethered Submersible Technology, 2005.

http://www.reapsystems.co.uk/_publications/Performance%20of%20Li-Poly%20cells%20at%20high%20pressure%20UUST2005.pdf
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Comparison of Battery Performance 
for Mobile Applications

Energy 
density, 
MJ/kg, MJ/l

Memory 
effect

Maximum 
current

Recharge 
efficiency

Self-discharge, 
%/month at 
293K

Lead- 
acid

0.14,  0.36 No 20C 0.8-0.94 ??

Ni-Cd 0.24,  0.72 Yes 3C 0.7-0.85 25

NiMH 0.29,  1.08 Yes 0.6C <20

Li-ion 0.43-0.72,  
1.03-1.37*

No 2C 12

All have 300+ cycles if max current is not exceeded.
* Lithium primary cells can reach 2.90 MJ/l

Osaka & Datta, p. 41, 449; Berndt p. 254
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Fuel Cells
• Electrochemical conversion like a battery, but the fuel cell 

is defined as having a continuous supply of fuel.
• At anode, electrons are released:   2H2  4H+ + 4e-

• At cathode, electrons are absorbed:     
O2 + 4e- + 4H+  2H2 0

• Proton-exchange membrane (PEM) between electrodes 
allows H+ to pass, forcing the electrons around outside 
the battery – the load.  PEMFC operates at 300-370K; a 
low-temperature fuel cell.  ~40% efficient.

electrolyte or PEM load

O2

H2

Porous cathode

Porous anode

e-

Larminie & Dicks
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Some Fuel Cell Issues
• High sensitivity to impurities:  e.g., PEMFC is 

permanently poisoned by 1ppb sulfide.
• Weight cost of storage of H2 in metal hydrides is 66:1; as 

compressed gas: 16:1.
• Oxidant storage:  as low as 0.25:1
• Reformation of H2 from other fuels is complex and 

weight inefficient:  e.g., Genesis 20L Reformer supplies 
H2 at ~ 0.05 kW/kg

• Ability of FC to change load rapidly.
• Typical Overall Performance Today:  

0.025 kW/kg, 0.016 kW/l

Larminie & Dicks, ch. 8, Griffiths et al.
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State of the Art 2005
• Gas turbines for large naval vessels due to 

extremely high power density, and the high 
thermal energy content of traditional fuels

• Li-based batteries now available at               
~0.65MJ/kg (180kWh/kg); gold standard in 
consumer electronics and in autonomous marine 
vehicles

• Fuel cells are still power-sparse and costly for 
most mobile applications, but continue to be 
developed.  More suitable are power generation 
plants in remote locations. 
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