
Massachusetts Institute of Technology Subject 2.017

Applying Optimization:  
Some Samples

Reference
Linear problems example:  A.D. Belegundu and T.R. Chandrupatla (1999).  
Optimization Concepts and Applications in Engineering.  Upper Saddle River, 
New Jersey.
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1.  Linear Optimization
• Idea:  many problems of optimization are linear, but of 

high dimension. 
• Parameter space is [x1 ,x2 ,x3 ,…, xn ] – this is what we are 

trying to find the best values of
• Best parameter set minimizes or maximizes a linear 

cost, e.g.,
J = 14x1 + 9x3 + 42x4

• but the parameter space is confined by some equalities 
E, e.g.,

x1 + 3x2 + 7x4 = 16,
• and some inequalities I, e.g., 

3x1 – 4x3 + x7 <= 30.
• A total of I+E constraint equations for n parameters.  

Obviously, I+E >= n for a solution to exist
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Example of Fuel Selection
The problem statement:
• Natural gas has 0.12% sulfur, costs $55/(kg/s), and gives 61MJ/kg heat energy 
• Coal has            2.80% sulfur, costs $28/(kg/s), and gives 38MJ/kg heat energy
• We have a steady 4MW load requirement.
• The sulfur emissions by weight have to be equal to or less than 2.5%.
• Minimize the money cost.

In mathematical form:
x1 = kg of natural gas to burn per second
x2 = kg of coal to burn per second

J = 55x1 + 28x2 (cost)

61x1 + 38x2 = 4 (E1 )

0.12x1 + 2.8x2 <= 2.5(x1 + x2 )   


 

x2 <= 8x1 (I3 )

Decreasing 
J

I3

I1

I2

x1

x2

E1

Optimum:  x1 = 0.011, x2 = 0.087 kg/s

A case where n = I+E ; unique solution
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More complex cases: the 2D case tells all!

x1

x2

I1

I2

I3

I4

I5

I6

E1

increasing J
Solution always falls within 
admissible regions defined 
by inequalities, AND along 
equality lines

OR

Solution always falls on a 
vertex of n constraint 
equations, either I or E.

Leads to a simple systematic 
procedure for small 
(e.g., n < 5, I+E < 10) 
problems  
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Idea:  Calculate J at all existent vertices, and pick the best one.

How many vertices are there to consider?
N = “Combinations of n items from a collection of I+E items” 
N = (I+E)! / n! (I+E-n)!
Consider 3-space (n=3);

If I+E = 4, N = 4    “TETRAHEDRON”
If I+E = 6, N = 20   “CUBE”   Not all 20 vertices may exist!

Consider 5-space (n=5);
If I+E = 10, N ~ 250 (still quite reasonable for calculations) 

1. Step through all combinations of n equations from the I+E 
available, solving an n-dimensional linear problem for each;     
Ax = b, when A is non-singular.  If A is singular, no vertex exists 
for the set.

2. For a calculated vertex location, check that it meets all of the 
other I+E-n  constraints.  If it does not, then throw it out.

3. Evaluate J at all the admissible vertices.
4. Pick the best one! More general case is Linear Programming; 

very powerful and specialized tools are available!
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2.  Min-Max Optimization

• Difficulties with the linear and 
nonlinear continuous problems 
– Multiple objectives or costs
– The real world sometimes offers only 

finite  choices, with no clear “best 
candidate.”  Tradeoffs must be made 
somehow!

– Sensitivity of solutions depending on 
poorly defined weights or costs

• Min-max:  Select the candidate with 
the smallest maximum deviation from 
the optimum value, obtained over all 
candidates.

J1

J2

??

E

I

I
x1

x2

??
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Modeling Experiments Writing
Alice 9 2 7

Barbara 4 8 6
Cameron 4 0 8

0/5 6/8 1/2
5/5 0/8 2/2
5/5 8/8 0/2

For each attribute and candidate, compute peak value and range, e.g., 

Alice has smallest 
normalized
maximum deviation 
from peak values 
(6/8=0.75)

Range 5 8 2
Peak 9 8 8

Calculate deviation from peak value, normalize by range for given attribute, e.g.,

Alice wins by ranking first, second, and second; is it fair?

We’re going to hire a teacher…  three were interviewed and scored…
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3.  Dynamic Programming
• Optimal sequences or trajectories, e.g.,

– minimize a scalar cost J(x(t),u(t),t), subject to 
dx(t)/dt = f(x(t),u(t),t).

– minimize the driving distance through the American 
highway system from Boston to Los Angeles

– minimize travel time of a packet on the internet
– etc…

• Dynamic programming is at the heart of nearly all 
modern path optimization tools

• Key ingredient:  Suppose the path from A to C is optimal, 
and B is an intermediate point.  Then the path from B to 
C is optimal also.

Seems trivial?

A C
B
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5

4

3

4

6

2 5

5

8

5

7

1. Evaluate optima at Stage 1:   
[A,End]opt = min(3 + 8 , 2 + 7 , 6 + 5) = 9, path [A,B,End]
[B,End]opt = min(5 + 8 , 5 + 7 , 4 + 5) = 9, path [B,C,End]

2. Evaluate optima from start:
[Start,End]opt = min(5 + 9 , 4 + 9) = 13, path [Start,B,C,End]

Inherited values from prior optimization
 Total cost is 8 additions

Power of Dynamic Programming grows dramatically with number of 
stages, and number of nodes per stage.

A
A

B

C

B

Numerical
Example

1
2

Start

End

Brute force:
12 additions
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S1 :
N1

S2 :
N2

S3 :
N3

Consider three decision stages, with N1 , N2 , and N3 choices respectively.
Total paths possible is N1 x N2 x N3 .  To evaluate them all costs 3N1 N2 N3 additions.

Dynamic programming solution:
At stage 2, evaluate the best solution from each node in S2 through S3 to the end:

N2 N3 additions.  Store the best path from each node of S2 .
At stage 1, evaluate the best solution from each node in S1 through S2 to the end;

N1 N2 additions.  Store the best path from each node of S1 .
At start, evaluate best solution from start through N1 to the end;

N1 additions.  Pick the best path!

Total burden is N2 (N1 +N3 )+N1 additions vs.  3 N1 N2 N3 additions.

GENERAL CASE:     N2(S-1)+N vs.   SNS for S stages of N nodes each
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4.  Lagrange Multipliers
Let x be a n-dimensional vector – the parameter space
Let f(x) be a vector of m functions that are functions of x - constraints
SOLVE:  min C(x)   subject to constraints f(x) = 0

Without the constraints, we can solve the n equations C/xi = 0, 
because at the optimum point x*, C(x*) is flat.

But in the presence of the constraints, we know only that 
C(x*) = 0      and                fk (x*) = 0       or:

i [C/xi ] dxi = 0      and     i [fk /xi ] xi = 0    (m+1 equations)
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Lagrange Multipliers cont.
Use m Lagrange multipliers 

 
to augment the cost function:

C’(x) = C(x) + k k fk (x)      
NOTE 

 
CAN TAKE ARBITRARY VALUES BY DESIGN

C’ = C + k k fk = i [C/xi + k k fk /xi ] xi

At optimum x*, we have C’ = 0; Each [ ] has to be zero, so 
we get n equations:    C/xi + k k fk /xi = 0,    i = 1,…,n

We already had m equations:  fk (x*) = 0,   k = 1, …,m

Solve the (m+n) equations for the n elements of x* and 
the m values of 
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