Applying Optimization:
Some Samples

Reference

Linear problems example: A.D. Belegundu and T.R. Chandrupatla (1999).
Optimization Concepts and Applications in Engineering. Upper Saddle River,
New Jersey.
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1. Linear Optimization

ldea: many problems of optimization are linear, but of
high dimension.

Parameter space Is [X{,X,,Xs,..., X,] — this is what we are
trying to find the best values of

Best parameter set minimizes or maximizes a linear
cost, e.qg.,

J = 14x, + 9X; + 42%,
but the parameter space is confined by some equalities
E, e.qg.,

X, + 3X, + 7X, = 16,
and some inequalities I, e.g.,

3X; — 4X5 + X, <= 30.
A total of I+E constraint equations for n parameters.
Obviously, I+E >= n for a solution to exist
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Example of Fuel Selection

A case where n = I+E ; unique solution
The problem statement:
» Natural gas has 0.12% sulfur, costs $55/(kg/s), and gives 61MJ/kg heat energy
» Coal has 2.80% sulfur, costs $28/(kg/s), and gives 38MJ/kg heat energy
* We have a steady 4MW load requirement.
» The sulfur emissions by weight have to be equal to or less than 2.5%.
* Minimize the money cost.

In mathematical form:

X, = kg of natural gas to burn per second
X, = kg of coal to burn per second

Decreasing
J

J = 55x, + 28X, (cost)
61x, + 38x, =4 (E)

0.12x, + 2.8%, <= 2.5(X; + X,)
2> X, <=8x, (15)

Optimum: x, =0.011, x, = 0.087 kg/s
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More complex cases: the 2D case tells all!

increasing J
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Solution always falls within
admissible regions defined
by inequalities, AND along
equality lines

OR

Solution always falls on a
vertex of n constraint
equations, either | or E.

Leads to a simple systematic
procedure for small
(e.g.,n<5, I+E < 10)

problems




ldea: Calculate J at all existent vertices, and pick the best one.

How many vertices are there to consider?
N = “Combinations of n items from a collection of I+E items” -
N = (I+E)! / n! (I+E-n)!
Consider 3-space (n=3); &
IfI+E=4,N=4 “TETRAHEDRON"
If I+E =6, N =20 “CUBE” Not all 20 vertices may exist!

Consider 5-space (n=5);
If I+E = 10, N ~ 250 (still quite reasonable for calculations)

. Step through all combinations of n equations from the I+E
available, solving an n-dimensional linear problem for each,;
Ax = b, when A is non-singular. If A is singular, no vertex exists
for the set.

. For a calculated vertex location, check that it meets all of the
other I+E-n constraints. If it does not, then throw it out.

3. Evaluate J at all the admissible vertices.
4. Pick the best one! More general case is Linear Programming;
very powerful and specialized tools are available!
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2. Min-Max Optimization

« Difficulties with the linear and J2

nonlinear continuous problems
. . . /
— Multiple objectives or costs

— The real world sometimes offers only
finite choices, with no clear “best
candidate.” Tradeoffs must be made
somehow!

— Sensitivity of solutions depending on X2
poorly defined weights or costs 7

e Min-max: Select the candidate with
the smallest maximum deviation from
the optimum value, obtained over all
candidates.
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We’'re going to hire a teacher... three were interviewed and scored...
Modeling Experiments Writing
Alice 9 2 7
Barbara 4 8 6
Cameron 4 0 38

For each attribute and candidate, compute peak value and range, e.g.,
Range 5 38 2
Peak 9 8 8

Calculate deviation from peak value, normalize by range for given attribute, e.g.,

E:> 0/5 6/8 1/2

5/5 0/8 2/2
Alice has smallest
normalized 5/5 8/8 0/2

maximum deviation
from peak values Alice wins by ranking first, second, and second; is it fair?
(6/8=0.75)
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3. Dynamic Programming

e Optimal sequences or trajectories, e.g.,
— minimize a scalar cost J(x(t),u(t),t), subject to
dx(t)/dt = f(x(t),u(t),t).

— minimize the driving distance through the American
highway system from Boston to Los Angeles

— minimize travel time of a packet on the internet
— etc...

 Dynamic programming is at the heart of nearly all
modern path optimization tools

o Key ingredient. Suppose the path from A to C is optimal,
and B is an intermediate point. Then the path from B to
C Is optimal also.

A C

Seems trivial?
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Numerical
Example

Brute force: Start
12 additions

1. Evaluate optima at Stage 1.
[AEnd],,=min(3+8,2+7,6+5 , path [A,B,End]
[B,End],,=min(5+8,5+7,4+5 , path [B,C,End]

opt
opt

2. Evaluate optima from start:
[Start,End] . =min(5+ 9, 4 + 9) = 13, path [Start,B,C,End]
Inherited values from prior optimization

opt

- Total cost is 8 additions

Power of Dynamic Programming grows dramatically with number of
stages, and number of nodes per stage.
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Sz: 83:
N, N,

Consider three decision stages, with N;, N,, and N, choices respectively.
Total paths possible is N; x N, x N;. To evaluate them all costs 3N;N,N; additions.

Dynamic programming solution:

At stage 2, evaluate the best solution from each node in S, through S; to the end:
N, N, additions. Store the best path from each node of S.,.

At stage 1, evaluate the best solution from each node in S, through S, to the end;
N, N, additions. Store the best path from each node of S,.

At start, evaluate best solution from start through N, to the end,;
N, additions. Pick the best path!

Total burden is N,(N;+N5)+N, additions vs. 3 N;N,N; additions.

GENERAL CASE: N?(S-1)+N vs. SNS for S stages of N nodes each
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4. Lagrange Multipliers

Let X be a n-dimensional vector — the parameter space
Let f(x) be a vector of m functions that are functions of x - constraints

SOLVE: min C(x) subject to constraints f(x) =0

Without the constraints, we can solve the n equations 6C/dx; = O,
because at the optimum point x*, C(x*) is flat.

But in the presence of the constraints, we know only that
oC(x*)=0 and of (x*) =0 or:
Z [0C/ox] dx, =0 and X% [of /ox] 0x; =0 (m+1 equations)
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Lagrange Multipliers cont.

Use m Lagrange multipliers A to augment the cost function:
C'(x) = C(x) + Xy Ay f(X)
NOTE A CAN TAKE ARBITRARY VALUES BY DESIGN

5C' = 8C + I, &, 8f, = = [5C/SX, + =, A, Of [5X] 8x,

At optimum x*, we have 6C’ = 0; Each [ ] has to be zero, so
we get n equations: JdC/ox; + Z, A, of /ox, =0, 1=1,...,n

We already had m equations: f (x*) =0, k=1,....m

Solve the (m+n) equations for the n elements of x* and
the m values of A
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