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Components of Engineered Feedback Systems

• Plant:  the system whose behavior is to be controlled.        
Examples:  vehicle attitude, temperature, chemical process, 
business accounting, team and personal relationships, global 
climate

• Actuator:  systems which alter the behavior of the plant.   
Examples: motor, heater, valve, law enforcement (!), pump, FET, 
hydraulic ram, generator, US Mint

• Sensor:  system which measures certain states of the plant.  
Examples:  thermometer, voltmeter, Geiger counter, opinion poll, 
balance sheet, financial analyst

• Controller:  translates sensor output into actuator input.     
Examples:  computer, analog device, human interface, committee

• Extreme variability in time scales:  
– active noise cancellation requires ~100 kiloHertz sensing and actuation
– Social Security is assessed and corrected at ~3 nanoHertz (10 years)
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Feedback fundamentally creates a new dynamics!
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Basics in the 
Frequency Domain C P

_+

r e u y

e = r – y
u = Ce = C(r-y)
y = Pu = PCe = PC(r-y)  

 

(PC + 1)y = PCr 

 

y / r = PC / (PC + 1)

Similarly, e = r – y  = r – PCe 

 

(PC+1)e = r 

 

e / r =    1 / (PC + 1)
u =  C(r-Pu)  (PC + 1)u = Cr 

 

u / r =   C / (PC + 1)

Why can we do this?  Convolution in time domain = Multiplication in freq. domain!

P must roll off at high frequencies – because no physical plant can respond to 
input at arbitrarily high frequency.

• Ideal case:  e is a small fraction of r:  e/r << 1, equivalent to y/r ~ 1
• This implies mag (PC + 1) >> 1 or mag (PC) >> 1.
• If plant P is given, then C has to be designed to make PC big.
• But mag (u / r) ~ mag(1 / P):   HUGE when P gets small at high frequencies 

 
excessive control action which will saturate or break actuators, excite 
unmodelled plant behavior, etc..   issues of robustness
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e/r = 1/(PC+1)
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 

Good tracking only possible at low frequencies  leads to a “formula” for design:

Make |PC| large at low frequencies, e/r ~ 0, y/r ~ 1;
Good regulation and tracking at low frequencies

Make |PC| small at high frequencies, e/r ~ 1, y/r ~ 0, u/r ~ C
Poor tracking at high frequencies, but reasonable control action

The frequency where |PC| = 1 is the crossover frequency c ; 
Above this point, closed loop t.f. y/r = PC/(PC+1) drops off to zero.
So c is about the bandwidth of the closed-loop t.f. 

cc
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Random Physical 
Disturbances

C P
_+

r e u y
d

+

+

e = r – y and u = Ce = C(r-y)
y = Pu + d = PCe + d = PC(r-y) + d 

With r = 0, (PC + 1)y = d  

 

y / d = 1 / (PC + 1)   ( = - e / d also)

u =  C(r- Pu - d) 

With r = 0, (PC + 1)u = -Cd 

 

u / d =   - C / (PC + 1)

Because PC+1 is large at low frequencies, y/d will be small at low 
frequencies; the closed-loop system rejects low-frequency disturbances 

competing!
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• d is a random input, sometimes white or with 
frequency content, e.g., ocean waves!

• Spectrum of y when system is driven by random 
noise as in previous analysis:

Sy = [y/d]* [y/d]  Sd

• d can enter either at the plant output (as above), 
or at the plant input, i.e., it has the same units as 
control u.  (Equations are different.)

C P
_+

r e u y
d

+

+



Massachusetts Institute of Technology Subject 2.017

LaPlace vs. Fourier XFM
Fourier Transform integrates   x(t) e –jt over the time range from 

negative infinity to positive infinity

Laplace Transform integrates    x(t) e-st over the time range from 
zero to positive infinity

Result:  X(j) can describe acausal systems, X(s) describes only causal ones!

Many important results of Fourier Transform carry over to LaPlace Transform:
L (x(t))   =    X(s)           (notation)

L

 

(ax(t))    =    a X(s)         (linearity)
L

 

(x(t) * y(t))   =    X(s)Y(s)     (convolution) 
L (xt (t))  sX(s)          (first time derivative)
L (xtt (t))  s2X(s)         (second and higher time derivatives)

L (∫

 
x(t)dt)   X(s) / s       (time integral)
L ((t))   =   1                 (unit impulse)
L (1(t))   =   1/s              (unit step)
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LaPlace Transform and Stability
• For linear systems, stability of a system refers to whether 

the impulse response has exponentially growing 
components. 

• No pre-determined input can stabilize an unstable system; 
no pre-determined input can destabilize a stable system.

• Some examples you can work out:
L (e-t)  =  1 / (s + )

L

 

(t e-t)  =  1 / (s + )2

L

 

[ e-t sin(t) ]  =  

 

/ (s2 + 2s + 2 + 2)

L

 

[ d e-nt sin (d t) / (1-2) ]  =  n
2 / (s2 + 2n s + n

2)
Major observation:  stable signal  roots of L

 

denominator 
have negative real parts:  EQUALITY IS TRUE FOR ALL 
FIRST- AND SECOND-ORDER SYSTEMS
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Decoding the transfer function
Numerator polynomials are a snap:

(s + 2)/(s2+s+5) = s/(s2 + s + 5) + 2/(s2+s+5)
“input derivative plus two times the input, divided by the denominator”

For higher-order polynomials in the denominator:  use partial fractions, e.g.,
(s+1)/(s+2)(s+3)(s+4) = -0.5/(s+2) + 2/(s+3) -1.5/(s+4)       (all real poles)
(s+1)/s(s2+s+1) = -s/(s2+s+1) + 1/s                                     (some complex poles)

Any high-order transfer function can always be broken down into a sum of transfer 
functions with factored first- and second-order polynomials in the denominator.  

stability  the roots of the characteristic 
equation have negative real part.

More details:
real negative root –:  the mode 

decays with time constant 1/
complex roots at -n 

 

+/- jd 
the mode decays with frequency d
and exponential envelope having 
time constant n
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Example with a double integrator:  e.g., a 
motor or dynamic positioning

System is     mxtt (t) = u(t)          where:
m is mass
xtt (t) is double time derivative of position
u(t) is control action; thrust

Let a Control law be:  u = - kp x  (Proportional Control:  P)
Closed-loop system dynamics become mxtt + kp x = 0
Response to an initial condition is undamped oscillations at frequency n = sqrt(kp /m)

P = 1/ms2

C = kp
PC = kp /ms2 

e/r = 1/(PC + 1) 
= ms2 / (ms2 + kp )

Tracking error is small when s is small; large when s is large, as desired.
BUT characteristic equation ms2 + kp = 0 has two imaginary poles – undamped!

P = 1 / ms2C = kp_+
r e
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Try the control law u = -kpx – kd xt (Proportional + 
Derivative:  PD)

Closed-loop system dynamics become mxtt + kd xt + kp x = 0
Recall for a second-order underdamped oscillator:

0 < kd < 2 sqrt(kp /m)   
n = sqrt(kp /m)            (undamped natural frequency)


 
= kd / 2 sqrt(kp m)    (damping ratio)

d = n sqrt(1-2)        (damped natural frequency)

Response to an initial condition is either:
• Damped oscillations at frequency d = sqrt(1-2)n , 

inside an exponential envelope with time constant 1/n  
OR    

• Sum of two decaying exponentials (overdamped case)
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Consider a constant disturbance:  mxtt + kd xt + kp x = F; 
System will settle at x = F/kp ; this is a steady-state error!
But kp cannot be increased arbitrarily – natural frequency 

will be too high and too much control action

Try the control law u = -kpx – kd xt – ki ∫
 

x dt
(Proportional + Derivative + Integral:  PID)

Closed-loop system dynamics become 
mxtt + kd xt + kp x + ki ∫

 
x dt = F

If the system is stable (ms3 + kd s2 + kp s + ki = 0 has roots 
with negative real part), then differentiate:

mxttt + kd xtt + kp xt + ki x = 0   settles to x = 0! 
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The PID
C = kp + kd s + ki /s

= (kp s + kd s2 + ki ) / s

High-frequency response is ~kd s; increases with frequency 
and disobeys the rule of finite power.  High frequency 
errors will lead to very large control action!

Sensor noise solutions:  
• use a very clean and high-res. sensor for x, which can 

be easily differentiated numerically, e.g., motor encoder
• use a sensor that measures dx/dt directly, e.g., 

tachometer
• filter the measurement.  For a low-pass, we would get

Cf = [ (kp s + kd s2 + ki ) / s ]  [ / (s+) ]
= 

 

(kp s + kd s2 + ki ) / s (s+)

But combine with a double integrator plant         P = 1/ms2

PC = m(kp s + kd s2 + ki ) / s3, which does go to zero at high 
frequencies, as desired  the system does have a real 
bandwidth, which can be tuned.
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Selected Application Notes
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Heuristic Tuning of PID loops
• Assuming a reasonably simple and stable plant, 

rule of thumb is:
– Turn on the proportional gain and the derivative gain 

together until the system transient response is 
acceptable

– Turn on the integral gain slowly so as to eliminate the 
steady-state error

• Why does it work?
– Proportional gain is like a spring, the derivative gain is 

like damping.  They are like physical dissipative 
devices and unlikely to destabilize your system (until 
you take the spring and damping too high)

– Integral gain IS DESTABILIZING  proceed 
cautiously!
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1.  Zeigler-Nichols Methods for 
Tuning of PID Controllers

• Ultimate cycle method
– Increase proportional gain only until the system has 

sustained oscillations at a period Tu ; this gain is Ku .  
(If no oscillations occur, don’t use this method!)

– For proportional-only control, use 
• Kp = Ku / 2

– For proportional-integral control use 
• Kp = 0.45 Ku and Ki = 0.54Ku / Tu

– For full PID, use 
• Kp = 0.6Ku , Ki = 1.2Ku / Tu and Kd = 4.8Ku / Tu

Explanation 
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Assume the plant is of the form     P = k / (s2 + 2n s + n
2) 

(no zeros, undamped natural frequency n , damping ratio )
With proportional-only control at Ku , the CL characteristic equation is 

s2 + 2n s + n
2 + kKu = 0

Because system has oscillations at frequency 2/Tu, we know that     
n

2 + kKu ~ [ 2/Tu ]2 OR       kKu = [ 2/Tu ]2 – n
2  =  Q

At this condition, the damping is not enough to counter the unmodelled 
dynamics that are causing the oscillation, so it is ignored.  

The characteristic equation with the Z-N PID gains becomes:
s2 + 0 + n

2 + k * [ PID controller ] = 0
s2 + 0 + n

2 + Q [ 0.6 + 1.2 / Tu / s + 4.8 s / Tu ]  =  0

s3 + [ 4.8 Q /Tu ] s2 + 
[ 4 2 / Tu

2 - Q + 0.6 Q ] s + 1.2 Q / Tu = 0

For a wide range of Q and Tu , this will give ~20% 
overshoot (~0.7) because the poles look like this:

x

x

x
real

imag

asin
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2. The 2
 

Discontinuity in 
Heading Control

PlantControllerConditioner+
_

reference

measured

actionerror

Objective of Conditioner is to make sure:
Controller never gets an error signal that is discontinuous

because of this effect
Controller will always go for the shortest path – i.e., will 

turn 90 degrees left instead of 270 degrees right!

Simple logic: 
Subtract or add 2

 

to error to bring it into the range  [ -, ].
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3.  Integrator Windup
• A purely linear effect that has broken many systems and 

caused damage and injury!
• Basic issue:  The integrator in the controller builds up a 

large control signal over time if the system is prevented 
from responding. 

PID:  Kp *error + Kd *d(error)/dt + Ki ∫
 

error dt
Solution:  constrain this part of the control to be within a 

certain neighborhood of zero.

plant output

reference

integrator channel 
of control

time
“release”

Motions so large models 
don’t hold and 
components fail!
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4.  Sensor Noise & Outliers
• Most common model for sensor 

noise is Broadband, Gaussian:
– Broadband means no particular 

frequency is favored – spectrum 
is flat; white noise.

– Gaussian means samples fit the 
probability distribution function:

N(0,1) = 1 / sqrt(2) * exp [ - x2 / 2 ] 

Such processes are defined 
completely by variance 

 

and 
mean value xo :

N(xo ,) = xo + sqrt() N(0,1) 

1000 samples of a zero-mean, 
unit variance normal variable

Computing the variance from n samples:


 

= [ (x1 -xo )2 + (x2 -xo )2 + … + (xn -xo )2 ] / (n-1)

N(0,1)

x

nu
m

be
r o

f s
am

pl
es
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Linear Filtering
Use good judgment!

filtering brings out trends, reduces noise   BUT
filtering obscures dynamic response

Causal filtering:  yf (t) depends only on past measurements – appropriate for 
real-time implementation

Example:  yf (t) = (1-) yf (t-t) + y(t)                        (“first-order lag”)

Acausal filtering:  yf (t) depends on all measurements
– appropriate for post-processing

Example:  yf (t) = [ y(t+t) + y(t) + y(t-t) ] / 3           (“moving window”)

Convolution implies that the filter transfer function F(s) times the LaPlace 
transform of the input signal will give the LaPlace transform of the filter 
output:

Yf (s) = F(s) [ Yclean (s) + V(s) ]

Since a white noise process has uniform spectrum, the quantity |F(j)| 
determines what frequencies will get through  idea is to eliminate enough 
of the noise frequency band that the system dynamics can be seen.  
IMPACT ON CONTROL LOOP.

Filter
yclean + v = y y f
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