Feedback Control

Massachusetts Institute of Technology Subject 2.017



Components of Engineered Feedback Systems

Plant: the system whose behavior is to be controlled.
Examples: vehicle attitude, temperature, chemical process,
business accounting, team and personal relationships, global
climate

Actuator: systems which alter the behavior of the plant.
Examples: motor, heater, valve, law enforcement (1), pump, FET,
hydraulic ram, generator, US Mint

Sensor: system which measures certain states of the plant.
Examples: thermometer, voltmeter, Geiger counter, opinion poll,
balance sheet, financial analyst

Controller: translates sensor output into actuator input.
Examples: computer, analog device, human interface, committee

Extreme variability in time scales:
— active noise cancellation requires ~100 kiloHertz sensing and actuation
— Social Security is assessed and corrected at ~3 nanoHertz (10 years)
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Feedback fundamentally creates a new dynamics!
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Basics in the
Frequency Domain

e=r-y
u=_Ce=C(ry)
y=Pu=PCe=PC(r-y) > (PC+1y=PCr = y/r=PC/(PC+1)

Similarly,e=r—-y =r—-PCe > (PC+l)e=r=> e/r= 1/(PC+1)
u= C(r-Pu) > (PC+1u=Cr=> u/r= C/(PC+1)

Why can we do this? Convolution in time domain = Multiplication in freq. domain!

P must roll off at high frequencies — because no physical plant can respond to
input at arbitrarily high frequency.

* Ideal case: e is a small fraction of r: e/r << 1, equivalentto y/r ~ 1

 This implies mag (PC + 1) >> 1 or mag (PC) >> 1.

o If plant P is given, then C has to be designed to make PC big. v

e Butmag (u/r) ~mag(1/P):. HUGE when P gets small at high frequencies 2>
excessive control action which will saturate or break actuators, excite
unmodelled plant behavior, etc.. < issues of robustness
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elr = 1/(PC+1)

Performance

y/r = PC/(PC + 1) \ Robustness

0) ()}

»
»

Good tracking only possible at low frequencies - leads to a “formula” for design:

Make |PC]| large at low frequencies, e/r ~ 0, y/r ~ 1;
Good regulation and tracking at low frequencies

Make |PC| small at high frequencies, e/r ~ 1, y/r ~0, u/r ~ C
Poor tracking at high frequencies, but reasonable control action

The frequency where |PC| = 1 is the crossover frequency o, ;
Above this point, closed loop t.f. y/r = PC/(PC+1) drops off to zero.
So o, is about the bandwidth of the closed-loop t.f.

Massachusetts Institute of Technology Subject 2.017



Random Physical

Disturbances , .
T?ﬁc

e=r—yandu=Ce = C(ry)

y=Pu+d=PCe+d=PC(r-y) +d >

Withr=0, (PC+1)y=d & y/d=1/(PC+1) (=-e/d also)

u= C(r-Pu-d)-> I competing!

Withr=0, (PC+1)u=-Cd®> u/d= -C/(PC+1)

Because PC+1 is large at low frequencies, y/d will be small at low
frequencies; the closed-loop system rejects low-frequency disturbances
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e dis arandom input, sometimes white or with
frequency content, e.g., ocean waves!

o Spectrum of y when system is driven by random
noise as in previous analysis:

S, = [y/d]* [y/d] Sy

« d can enter either at the plant output (as above),

or at the plant input, I.e., it has the same units as
control u. (Equations are different.)

r e
C
+ i :

Massachusetts Institute of Technology Subject 2.017



LaPlace vs. Fourier XFM

Fourier Transform integrates x(t) e 7@t over the time range from
negative infinity to positive infinity

Laplace Transform integrates x(t) est  over the time range from
zero to positive infinity

Result: X(jo) can describe acausal systems, X(s) describes only causal ones!

Many important results of Fourier Transform carry over to LaPlace Transform:
LX) = X(s) (notation)
L (ax(t)) = aX(s) (linearity)
L(x® *y) = X(s)Y(s) (convolution)
L (X(1)) €2 sX(s) (first time derivative)
L (X)) €2 s2X(s) (second and higher time derivatives)

L ( f x(t)dt) €2 X(s)/s (time integral)
£t) = 1 (unit impulse)
£(1(t) = 1/s (unit step)
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LaPlace Transform and Stabillity

For linear systems, stability of a system refers to whether
the impulse response has exponentially growing
components.

No pre-determined input can stabilize an unstable system,;
no pre-determined input can destabilize a stable system.

Some examples you can work out:
£e* = 1/(s+ o)
Lte ) =1/ (s+ a)
rle*sin(ot)] = o/ (s?+ 2as + a® + ®?)
L[ ogetntsin (ogh)/ (1-62)] = o2/ (s? + 2Lo,S + ©,2)
Major observation: stable signal €=» roots of £ denominator

have negative real parts: EQUALITY IS TRUE FOR ALL
FIRST- AND SECOND-ORDER SYSTEMS
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Decoding the transfer function

Numerator polynomials are a snap:
(s + 2)/(s?+s+5) = s/(s? + s + 5) + 2/(s?+s+5)
“Input derivative plus two times the input, divided by the denominator”

For higher-order polynomials in the denominator: use partial fractions, e.g.,
(s+1)/(s+2)(s+3)(s+4) = -0.5/(s+2) + 2/(s+3) -1.5/(s+4) (all real poles)
(s+1)/s(s?+s+1) = -s/(s?+s+1) + 1/s (some complex poles)

Any high-order transfer function can always be broken down into a sum of transfer
functions with factored first- and second-order polynomials in the denominator.

1/(s+1) and 14s+2)

stability €-> the roots of the characteristic Ll N
equation have negative real part. |

05

More details: I Y
real negative root —a.: the mode oo

. . 145 + 0.25 + 1) and 1/(s“+s+1)

decays with time constant 1/a : 1

complex roots at -0, +/- jog: 054 | 59

the mode decays with frequency o E s g

and exponential envelope having N S s e o

time constant 1/, R

1
T —

of— 0
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Example with a double integrator: e.g., a
motor or dynamic positioning

Systemis  mxg(t) = u(t) where:
m is mass
X(t) is double time derivative of position
u(t) is control action; thrust

Let a Control law be: u =-k, x (Proportional Control: P)
Closed-loop system dynamics become mx + k,x =0
Response to an initial condition is undamped oscillations at frequency o, = sqrt(k,/m)

P = 1/ms?
C=k,
PC = kp/ms2 ->

P=1/ms?

elr=1/(PC + 1)
=ms?/ (ms? + k)

Tracking error is small when s is small; large when s is large, as desired.
BUT characteristic equation ms? + k, = 0 has two imaginary poles — undamped!
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Try the control law u = -k x — kgX; (Proportional +
Derivative: PD)

Closed-loop system dynamics become mx; + kgx+ kx =0
Recall for a second-order underdamped oscillator:
0 <ky <2 sqrt(k,/m)
o, = sqrt(k,/m) (undamped natural frequency)
C=Kkq/2sqgrt(k,m) (damping ratio)
04 = o, Sqrt(1-?) (damped natural frequency)

Response to an initial condition is either:

« Damped oscillations at frequency o4 = sqrt(1-C%)m,,
Inside an exponential envelope with time constant 1/@@n
OR

o Sum of two decaying exponentials (overdamped case)
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Consider a constant disturbance: mx; + kyx, + k) x = F;
System will settle at x = F/k,; this is a steady-state error!

But k, cannot be increased arbitrarily — natural frequency
will be too high and too much control action

Try the control law u = -k x — kyx,— k; [ x dt
(Proportional + Derivative + Integral: PID)

Closed-loop system dynamics become
MXy + KX+ kKox + ki [xdt=F

If the system is stable (ms? + k;s? + k. s + k = 0 has roots
with negative real part), then differentiate:

MXy + KXy + KX, + kx =0 =» settles to x = 0!
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The PID

C =k, +kgs +kils
= (kps + kqs? + k) /s

High-frequency response is ~k;s; increases with frequency
and disobeys the rule of finite power. High frequency
errors will lead to very large control action!

Sensor noise solutions:

use a very clean and high-res. sensor for x, which can
be easily differentiated numerically, e.g., motor encoder

use a sensor that measures dx/dt directly, e.g.,
tachometer

filter the measurement. For a low-pass, we would get
Ci=[(ks+kgs>+k)/s] [L/(s+))]
= A (K, + kg8 + k) /s (s+2)

But combine with a double integrator plant P =1/ms?

PC = m(ks + kss? + k) / s*, which does go to zero at high
frequencies, as desired - the system does have a real
bandwidth, which can be tuned.
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Selected Application Notes




Heuristic Tuning of PID loops

« Assuming a reasonably simple and stable plant,
rule of thumb Is:
— Turn on the proportional gain and the derivative gain

together until the system transient response is
acceptable

— Turn on the integral gain slowly so as to eliminate the
steady-state error

 Why does it work?

— Proportional gain is like a spring, the derivative gain is
like damping. They are like physical dissipative
devices and unlikely to destabilize your system (until
you take the spring and damping too high)

— Integral gain IS DESTABILIZING - proceed
cautiously!
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1. Zeigler-Nichols Methods for
Tuning of PID Controllers

« Ultimate cycle method

— Increase proportional gain only until the system has
sustained oscillations at a period T ; this gain is K,.
(If no oscillations occur, don’'t use this method!)

— For proportional-only control, use
« K,=K,/2
— For proportional-integral control use
* K,=0.45K,and K; = 0.54K,/ T,
— For full PID, use
+ K,=0.6K,, Ki=1.2K,/ T, and Ky = 4.8K,/ T,

Explanation >
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Assume the plantis of the form P =k/(s? + 2{o,S + ®,?)
(no zeros, undamped natural frequency @,, damping ratio &)

With proportional-only control at K, the CL characteristic equation is
s?+2lw,s+ o, +kK,=0

Because system has oscillations at frequency 2xn/T,, we know that
o, + kK, ~ [ 2a/T,]? OR kK, =[2a/T, ]’ -, = Q

At this condition, the damping is not enough to counter the unmodelled
dynamics that are causing the oscillation, so it is ignored.

The characteristic equation with the Z-N PID gains becomes: _
s2+ 0+ w2+ k*[PID controller] = 0 =Sl
s?+0+0+Q[06+1.2/T,/s+48s/T,] =0

S*+[4.8Q/T,]s? +
[472/T2-Q+06Q]s+1.2Q/T,=0

For a wide range of Q and T, this will give ~20%
overshoot (£~0.7) because the poles look like this:
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2. The 2rn Discontinuity In
Heading Control

reference + 7\ error action

\( Conditioner Controller

measured

Objective of Conditioner is to make sure:
Controller never gets an error signal that is discontinuous
because of this effect
Controller will always go for the shortest path — i.e., will
turn 90 degrees left instead of 270 degrees right!

Simple logic:
Subtract or add 2r to error to bring it into the range [ -n, ©t].
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3. Integrator Windup

* A purely linear effect that has broken many systems and
caused damage and injury!

e Basic issue: The integrator in the controller builds up a

large control signal over time if the system is prevented
from responding.

PID: K,*error + Ky*d(error)/dt + K f error dt

Solution: constrain this part of the control to be within a
certain neighborhood of zero.

A

Motions so large models

integrator channel don’t hold and
of control components fail!

plant output
“release”
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4. Sensor Noise & Outliers

e Most common model for sensor
noise is Broadband, Gaussian:

— Broadband means no particular
frequency is favored — spectrum
IS flat; white noise.

— Gaussian means samples fit the
probability distribution function:

N(0,1) =1/ sqrt(2n) *exp [- x?>/ 2]

Such processes are defined
completely by variance u and
mean value X,:

N(Xo:H) = X, + Sqrt(w) N(O,1)

Computing the variance from n samples:
H= [ (Xl_xo)2 + (XZ_XO)Z ...t (Xn_xo)2 ] / (n'l)
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Linear Filtering  yiutv=y

— Filter

Use good judgment!
filtering brings out trends, reduces noise BUT
filtering obscures dynamic response

Causal filtering: y((t) depends only on past measurements — appropriate for
real-time implementation

Example: y;(t) = (1-&) y; (t-At) + £y(t) (“first-order lag”)

Acausal filtering: y; (t) depends on all measurements
— appropriate for post-processing
Example: y.(t) = [ y(t+a4t) + y(t) + y(t-4t) ] / 3 (“moving window”)

Convolution implies that the filter transfer function F(s) times the LaPlace
transform of the input signal will give the LaPlace transform of the filter

output:
Yi(8) = F(S) [ Yean(S) + V(S) ]

Since a white noise process has uniform spectrum, the quantity |F(jo)]
determines what frequencies will get through - idea is to eliminate enough
of the noise frequency band that the system dynamics can be seen.
IMPACT ON CONTROL LOOP.
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