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Linear filters will not handle outliers very well — they are
Interpreted as impulses

First defense against outliers: find out their origin and
eliminate them at the beginning!

Detection: Exceeding a known, fixed bound, or an

Impossible deviation from previous values. Example: vehicle
speed >> the possible value given thrust level and prior tests.

Second defense: set data to NaN (or equivalent), so it

won’t be used in any calculations.
Third defense: try to fill in.

Example:
if abs(x(k) — x(k-1)) > MX,
x(k) = x(k-1) ;

end;

Can get lost if multiple outliers occur!
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1.7 undersampling 2.3 undersampling

Time Resolution in WW‘WW MMWNW
Sampled Systems AR 2R

2.9 undersampling 3.0 undersampling

Frequency
folding

The Sampling Theorom shows that the highest frequency that

can be detected by sampling at frequency o, = 2nt/At Is the
Nyquist rate: oy = o,/ 2.
Higher frequencies than this are “aliased” to the range below

the Nyquist rate, through “frequency folding.” Includes sensor
noise!

The required rate for “visual” analysis of the signal, and phase
and magnitude calculation is much higher, say ten samples per
cycle.
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Filtering of Signals In
Discrete Time

Filter

Use good judgement!
- filtering brings out trends, can reduce noise, but
- filtering obscures some properties of the signal

Causal filtering: X; (t) depends only on past measurements —
appropriate for real-time implementation

Example: x;(t) = (1 — ¢) X (t-4t) + & X(t-At)

First-order lag, backward Euler

Acausal filtering: x(t) depends on past and future measurements
— appropriate for post-processing

Example: x;(t) = [ x(t+4t) + x(t) + x(t-4t) ] / 3

Moving window, centered, uniform weighting
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A ﬁrst_order f||ter transfer SNR:O.I25, Filtering Iat 20 and GOISampIes Ri?e Time
function in the freq. domain:
x(jo) I X(jo) = A/ (joo + )

At low o, this is approximately
1(=A/A)

At high o, this goesto O
magnitude, with 90 degrees

phase lag (A / jo = -JA / ®)

Time domain equivalent:
dx:/ dt = A (X — X)

In discrete time, try this quick
algorithm:
X{(K) = (1-AAt) x(k-1) +
At x(k-1)
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Thinking about discrete-time signals: time step At
between X, and X, ,

X1

?@?

Example: dx/dt =u — At —

Fourier Transform: jo X(jo) = U(jo)
X(jo)/U(jo)=1/jw

Let q be the delay operator: g-transform: X(q) = X, X, g
This means: X(Q) =X, + X, g+ X,0?° + ...

Make a discrete-time approximation for the example:
dx/dt=u—-> (X, —X )/ At=u,,
X(q) (1-q)/At=q U(q)
X(q)/U(q) =qAt/(1-q)
Sojm=(1-q)/qAt for this case backward Euler
qg=1/(1+jo At) O

Massachusetts Institute of Technology 2.017




Try a different method:
dx/dt=u—-> (X, —X.,)/ At=u,
X(q) (1-0q)/At=U(q)
X(q) /' U(q) = At/ (1-q)

Sojo=(1-0q)/At for this case forward Euler
g=1-jo At O

Let’s do a more careful job by using both old and new u’s:

dx/dt=u—-> (X, —X )/ At=(u,+u,,) /2
X(a) (1-0q)/At=U(q) (1 +q)/2
X(a)/U(@@)=(1+0q)At/2(1-q)

Sojm=2(1-q9)/(1+q)At bilinear approximation
d=(1-joAt/2)/(1+jo At/2) O
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Fourier Transform of the Delay:

F(q) = [ edor §(t — At) dr

— e'J(DAt

Heuristic
discretizations are
approximations of the
exponential!
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Translating an analog system into discrete-time, e.g.,

Digital Filtering and Control:

Example:

dx/dt=-x + u (low-pass filter with cutoff frequency lrad/s)
X(jo)/U(jo)=1/(jw + 1)

Substitute the bilinear approximation:
X@ /U@ = @0Q+ag/[(1+2/At)+q((1-2/At)]

Pseudo-code: It’s ready to go! ™

il discrepand::y |
Fact: TF’s X(jo) / U(jo) =] | g\
and X(qg) / U(q) have almost Lo . .

the same magnitude and Za0] \

phase plots vs o when
q = eJoAt (up to the Nyquist rate)
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Consider vector case: dx/dt=Ax, x(0) =X,
Solution must satisfy dx(0)/dt = Ax, and x(0) = x,
Solution is X(t) = eAt x,
where the eAtis a matrix exponential, obeying many of the rules of
the scalar exponential:

d(eAY/dt = AeAt eAt=]+ At + A%t/2! +

e?=1 (identity) etc...

Consider the system dx/dt = Ax + Bu
eAB is the impulse response of the system such that

X(t) = eAtx, + fo eAt) Bu(t)dt  OR
X, = eAdtx . + ftkl eAltks) B u(r) dr

Let u be constanton t, , to t, (zerg -order hold):
t
X, = erdtx o+ [, eAtkd dr B u,,

Xk = Xk-l + T uk-l 1:1 mapping betV\{een conf[inuous and
— — discrete-time systems
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