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Announcements ||| MITMECHE

» Milestone Presentations on Nov 5 In class

— This is 15% of your total grade:
= 5% group grade
= 10% individual grade

— Email your team’s PowerPoint file to Franz and Harrison by 10 am on Nov 5
— Each team gets 30 minutes of presentation + 10 minutes of Q&A
— Select or design your own presentation template and style



Control Systems ||| wiTmEGHE

 An integral part of any industrial society

« Many applications including transportation, automation,
manufacturing, home appliances,...

* Helped exploration of the oceans and space

« Examples:
— Temperature control
— Flight control
— Process control



Types of Control Systems ||| MTMECHE
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Control System Comparison ||| miTmECHe

« Open loop:
— The output variables do not affect the input variables
— The system will follow the desired reference commands if no unpredictable effects occur
— It can compensate for disturbances that are taken into account
— It does not change the system stability

* Closed loop:

— The output variables do affect the input variables in order to maintain a desired system behavior
— Requires measurement (controlled variables or other variables)

— Requires control errors computed as the difference between the controlled variable and the reference
command

— Computes control inputs based on the control errors such that the control error is minimized

Able to reject the effect of disturbances

Can make the system unstable, where the controlled variables grow without bound



Overview of Closed Loop Control Systems |||
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Control System Representations ||| sl

Q(s)_ (K. )
 Transfer functions (Laplace) 7(s) ™ (r, 7, /K>)s+1

« State-space equations (System matrices) {X(t) = AX(t)+Bu(t)
y(t) = Cx(t)+ Du(t)
* Block diagrams
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Laplace Transform ||| MITMECHE

« Convert functions of time into functions that are algebraic in the
complex variables.

* Replaces differentiation & integral operations by algebraic
operations all involving the complex variable.

* Allows the use of graphical methods to predict system
performance without solving the differential equations of the
system. These include response, steady state behavior, and
transient behavior.

« Mainly used in control system analysis and design.



Laplace vs. Fourier Transform ||| miTmECHE

e Laplace transform:
F(s)=] (e dt f'(t) = sF(s)
 Fourier transform

F(w)=]" e “dt

« Laplace transforms often depend on the initial value of the
function

* Fourier transforms are independent of the initial value.

* The transforms are only the same if the function is the same both
sides of the y-axis (so the unit step function is different).



System Modeling (15t Order System) ||| TMECHS

Differential equation: Transfer function:

Laplace transform
mV (s)s+bV (s)=F(s)

v
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System Modeling (2" Order System) 1L

mv(t) +bv(t) = f (1)
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2"d Order System Poles
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System Identification (Time Domain) 1L

Step Input, Open Loop
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System ldentification (Frequency Domain) ||| miTEenE
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Closed-Loop Transfer Function ||| rTEcs

* The gain of a single-loop feedback system is given by the
forward gain divided by 1 plus the loop gain.

R(S) +<> e, G.(5)G(s) > Y(s)
H(S) <
G (s)— — C:(98()
T T 14G,(5)G(S)H (5)




PID Controller Transfer Function
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Disturbance Rejection || MiTMECHE
(Active Vibration Cancellation) |
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Control Actions
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* Proportional — improves speed but with steady-state error

e Integral - improves steady state error but with less stability, overshoot,
longer transient, integrator windup

o Derivative — improves stability but sensitive to noise
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Root Locus ||| MITMECHE

 Can we increase system damping with a simple proportional control ?
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MATLAB SISO Design Tool

MITMECHE

« MATLAB command: ‘sisotool’ or ‘rltool’

PID Controller Transfer Function
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Courtesy of The MathWorks, Inc. Used with permission.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See I/vww.mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.


www.mathworks.com/trademarks

State-Space Representation ||| wiTmECHE

X(t) = Ax(t) + Bu(t) sX (s) = AX (s)+BU (s) —
YO =Cxt)+Dut) | Y(s)=CX(s)+DU(s) —I-

(sl —A)X(s)=BU(s) *
= X(s)=(sl —A)'BU(s)
Y(s)=C(sl —A)'BU(s)+DU(s) <

:G(s):%zqsl ~A)'B+D




Characteristic Polynomial ||| mITMECHE

Resolvent
if D=0 /
— G(s)=C(sl—A)'B =¢| 2UCI ZA) |5
det(sl — A)
_ det(sl =A+BC)—det(sl - A)
det(Sl Bl A) MATLAB ss2tf command uses

this formula to compute the
transfer function(s)

Characteristic polynomial



Controllability ||| wiTmEcHE

Definition 12.1 Controllability
A system described by

x(t) = f(x(t), ult))
y(t) = g(x(t), u(t))

is said to be controllable if any initial state x(tg) can be transfered to any final
state x(ty) in a finite time ty —tg = 0 by some piecewise continuous control
signal w(t). If every state x(tg) of the system is controllable, the system is said
to be completely state controllable or simply controllable.

A X2

—
‘\) X1

X(to)

X(tr)

Courtesy of Kamal Youcef-Toumi. Used with permission.




Observability ||| wiTMECHE

Definition 12.3 Observability
A system described by

x(t) = f£(x(t). u(t))
vit) = glx(t), ult))

is observable if any fired initial state xX(tg) can be eractly determined from the
measurements of the output y(t) and the input u(t) over a finite interval of time.
If every state of the system is observable, the system is said to be completely
observable or simply observable,

Courtesy of Kamal Youcef-Toumi. Used with permission.



Stabilizability and Detectability ||| MTMECHE

Definition 12.2 Stabilizability
A system is said to be stabilizable if the uncontrollable modes are stable.

Definition 12.4 Detectability
A system is said to be detectable if the unobservable modes are stable.

Courtesy of Kamal Youcef-Toumi. Used with permission.



Example
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« Can we observe and/or control the position (x) of the following
system?
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Full-State Feedback ||| mEenE

X = AX+ BuU
y = CX

Open-loop characteristic equation: ‘det[sl — A] = O‘

U =-KX

X = Ax—BKx = (A—BK)x

Closed-loop characteristic equation: ‘det[sl —(A- BK)] = O‘




Where to Place The Poles? ||| miTmECHE

« Must meet the performance requirements:
— Stability
— Speed of response
— Robustness

* For a given state the larger the gain, the larger the control input
* Avoid actuator saturation
* Avoid stressing the hardware (not exciting any structural modes)

* The gains are proportional to the amounts that the poles are to be
moved. The less the poles are moved, the smaller the gain matrix.



Butterworth Pole Configurations ||| TEGHE

 The bandwidth of a system is governed primarily by its dominant
poles (i.e., the poles w/ real parts closest to the origin)

« Efficient use of the control signal would require that all the

closed-loop poles be about the same distance from the origin
(a.k.a Butterworth configuration)

Pole-Zero Map

Bl(s) =S +1 11
Bz(s):SZ‘F\/ES-i-l g
B,(s)=5"+25"+25+1 I E— S

B,(s)=s"+2.613s° +(2+\/§)52 £2.6135+1—> |

-1.51




State-Space Design Summary ||| wiTmEcHE

« Formulate the state-space model

« Make sure the system is both controllable and observable by checking the
ranks of the controllability and the observability matrices

— Add additional actuators if necessary
— Add additional sensors if necessary
— Eliminate redundant states

« Select a bandwidth high enough to achieve the desired speed of response

* Keep the bandwidth low enough to avoid exciting unmodeled high-frequency
modes and noise

* Place the poles at roughly uniform distance from the origin for efficient use of
the control effort



Example III MITMECHE

{)‘((t) = AX(t) + Bu(t)
y(t) = Cx(t)

S

Place closed-loop poles according to the Butterworth configuration

Bzm C=[1 1]

det[sl —(A—BK)]=B,(5) =5’ +~/25+1

-1
Bass-Gura formula: K = [(QW) } (a-a)

Ackermann’s formula: MATLAB command “acker(A,B,p)”



Example MATLAB Code | | -

% 2.14/2.140 State-Space Method Example

%% Test controllability and observability

040,
W Set up an SS model CtriTestMatrix = ctrb(A,B)

A=1]J01 rank(CtriTestMatrix)

4 -2 ObsrbTestMatrix = obsv(A,C)
B =[O0 rank(ObsrbTestMatrix)

1]1;

%% Place the poles to Butterworth configuration
[1 1]; p = roots([1 sqrt(2) 1)
0- % K = acker(A,B,p) % this method is not numerically
’ reliable and starts to break down rapidly for problems of
order greater than 5
K = place(A,B,p)

%% Convert to transfer function

[num,den] = ss2tf(A,B,C,D,1); % check the closed-loop pole locations
eig(A-B*K)

Sys_tf = tf(num,den) pzmap(L.poly(eig(A-B*K)))

zpk(sys_tfF)
pzmap(sys_tf)
hold




Freguency Design Methods ||| .

* Loop shaping

 Bode, Nyquist

* Crossover frequency

* Closed-loop bandwidth

 Phase margin



Frequency Response (Gain and Phase) ||| mimEene
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Frequency Response (Bode Plot ) ||| mimEene

* The frequency response of a system is typically expressed as a Bode plot.

M, = Mo-sin[%]:0.707-Mo
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