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Basic Physics of Underwater 
Acoustics

Reference used in this lecture:  Lurton, X. 2002.  An introduction to 
underwater acoustics.  New York:  Springer.
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Definitions
p:  pressure, measured relative to hydrostatic, Pa
:  density, measured relative to hydrostatic, kg/m3

E:  bulk modulus of the fluid, Pa, p = E [ 
 


[u,v,w]: deflections in [x,y,z]-directions, relative to 

the hydrostatic condition, m

Then in one 
dimension (pipe)
p = E [ -u / x ]

x

u
u + u

+x
undeformed

deformed
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One-dimensional Case cont.

Newton’s Law:      
p = - 

 
utt x OR

px = - 
 

utt

Constitutive Law:
p = - E u / x OR
p = - E ux

x

p
p + p

u

diff wrt x

diff wrt tt

pxx = [ / E ] ptt

a wave equation!
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Let p(x,t) = Po sin(t – kx)

Insert this in the wave equation:
- Po k2 sin( ) = - [ 

 
/ E ] Po 2 sin( ) 

[ 
 

/ k ]2 = E / 
Wave speed      c k = [ E 
This is sound speed in fluid, independent of pressure, or 

frequency.

In water:


 
~ 1000 kg/m3, E ~ 2.3e9 N/m2    c ~ 1500 m/s

Wavelength k = cc/f1kHz : 1.5m in water

time

space
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In Three Dimensions:  A CUBE

Newton’s Law:
px = - 

 
utt  pxx = - 

 
uttx

py = - 
 

vtt  pyy = - 
 

vtty

pz = - 
 

wtt  pzz = - 
 

wttz

Constitutive Law:
- E ux = p / 3  - E uttx = ptt / 3
- E vy = p / 3  - E vtty = ptt / 3
- E wz = p / 3  - E wttz = ptt / 3

x
y

z

pxx +pyy +pzz = ptt / c2

or ∇2p = ptt / c2

Lead to Helmholtz Equation:

All directions deform uniformly

deformed

undeformed

where ∇2 is the LaPlacian 
operator
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Particle Velocity
Consider one dimension again (Newton’s Law):  
px = -

 
utt 

 
px = -

 
(ut )t

If   p(x,t) = Po sin(t - kx)   and   ut (x,t) = Uto sin(t - kx) 

-kPo cos( ) = -
 

Uto cos( )   
 

Uto = Po / 
 

c        

Note velocity is in phase with pressure!
c]: characteristic impedance;   

water: c ~ 1.5e6 Rayleighs “hard”
air:  c ~   500 Rayleighs “soft”

In three dimensions:
∇p = -

 
Vt where 

∇p =  px i + py j + pz k and
V =  ut i + vt j + wt k
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Note equivalence of the following:


 
= c / f     and     / k = c

There is no dispersion relation here; this is the only 
relationship between 

 
and k!

Consider Average Power through a 1D surface:
P(x) = [ 1 / T ] ∫ T p(x) ut (x) d


 
[ 1 / T ] ∫ T Po Uto sin2(

 
- kx ) d


 
Po Uto 


 
Po



 

c = Uto
2 c / 2


 
Acoustic Intensity in W/m2


 

If impedance c is high, then it takes little power to 
create a given pressure level; but it takes a lot of power 
to create a given velocity level

Power per unit area is 
pressure times velocity
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Spreading in Three-Space
At time t1 , perturbation is at radius r1 ;  at time t2 , radius r2 
P(r1 ) = Po

2(r1 ) / 2 c
P(r2 ) = Po

2(r2 ) / 2 
 

c 

Assuming no losses in water; then 
P(r2 ) = P(r1 ) r1

2 / r2
2 = Po

2 (r1 ) r1
2 / 2 

 
c r2

2

and
Po (r2 ) = Po (r1 ) r1 / r2

Let r1 = 1 meter (standard!) 
P(r) = Po

2(1m) / 2 
 

c r2

Po (r) = Po (1m) / r
Uto (r) = Po (1m) / 

 
c r

r

r2

r1

Pressure level and particle velocity
decrease linearly with range
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Decibels (dB)
10 * log10 (ratio of two positive scalars):

Example:
x1 = 31.6 ; x2 = 1  1.5 orders of magnitude difference

10*log10 (x1 /x2 ) =  15dB
10*log10 (x2 /x1 ) = -15dB

RECALL        log(x1
2/x2

2) =  log(x1 /x2 ) + log(x1 /x2 ) = 2 log(x1 /x2 )

In acoustics, acoustic intensity (power) is referenced to 1 W/m2 ;
pressure is referenced to 1 Pa

10*log10 [ P(r) / 1 W/m2 ] = 10*log10 [ [ Po
2(r) / 2 

 

c] / 1 W/m2 ]                     
= 20*log10 [ Po (r) ] – 10*log10 (2c)

= 20*log10 [ Po (r) / 1Pa ] – 120 - 65
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Spreading Losses with Range
Pressure level in dB at range r is 
20 log10 [ Po (r) / 1Pa ] - 185   = 
20 log10 [ Po (1m) / r / 1Pa ]  - 185  = 
20 log10 [ Po (1m) / 1Pa ] – 20 log10 [r] -185

Example: At 100m range, we have lost 
40dB or four orders of magnitude in sound intensity
40dB or two orders of magnitude in pressure 

(and particle velocity)
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Attenuation Losses with Range

0.1 1 10 100 1000
0.001

0.01

0.1

1

10

100

1000

kHz

, in dB/km (pressure)

At 100 Hz, ~1dB/1000km:
OK for thousands of km,
ocean-scale seismics and 

communications 

At 10kHz, ~1dB/km:
OK for ~1-10km, 
long-baseline acoustics

At 1MHz, 3dB/10m:
OK for ~10-100m,
imaging sonars, Doppler 

velocity loggers

Linear a
pproxim

atio
n!

Franco
is &

 G
arris

on (1
982) m

odel

TL = 20log10 r + 
 

r

Acoustic power does have losses with transmission distance – primarily 
related to relaxation of boric acid and magnesium sulfate molecules in 
seawater.  Also bubbles, etc.

(pressure 
transmission loss)
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The Piezo-Electric Actuator
strain = constant X electric field 

 = d X E or
t / t = d X ( V / t )
where d = 40-750 x 10-12 m / V  
Drive at 100V, we get only 4-75 nm thickness change!

t

tE

V+Series connection 
amplifies 
displacement

**still capable of MHz performance**

V-
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The Piezo-Electric Sensor
electric field = constant X stress

E = g X 
 
or

V = t g 
where g = 15-30 x 10-3 Vm/N

Ideal Actuator:  Assume the water does not 
impede the driven motion of the material

Ideal Sensor: Assume the sensor does not deform 
in response to the water pressure waves
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Typical Transducer:  
120 to 150 dB re 1Pa, 1m, 1V means
106 – 107.5 Pa at 1m for each Volt applied   or
1-30 Pa at 1m for each Volt applied

Typical Hydrophone:
-220 to -190 dB re 1Pa, 1V means
10-11 to 10-9.5 V for each Pa incident                or
10-5 to 10-3.5 V for each Pa incident

So considering a transducer with 16Pa at 1m per Volt, and 
a hydrophone with 10-4 V per Pa:

If V = 200V, we generate 3200Pa at 1m, or 3.2Pa at 1km, 
assuming spreading losses only;

The hydrophone signal at this pressure level will be 
0.00032V or 320V !
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