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13.1 Vectors
13.1.1 Definition

We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction.
For example, in three-space, we write a vector in terms of its components with respect to a
reference system as

2
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I
—_

The elements of a vector have a graphical interpretation, which is particularly easy to see in
two or three dimensions.

1. Vector addition:

a+b = ¢
2 3 5
1 V4034 = 1y
7 9 9

Graphically, addition is stringing the vectors together head to tail.

2. Scalar multiplication:

13.1.2 Vector Magnitude

The total length of a vector of dimension m, its Euclidean norm, is given by

m
12 = | 2%
i=1

This scalar is commonly used to normalize a vector to length one.
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13.1.3 Vector Dot or Inner Product

The dot product of two vectors is a scalar equal to the sum of the products of the corre-
sponding components:

The dot product also satisfies

7y = [|Z[[||g]| cos 0,

where 0 is the angle between the vectors.

13.1.4 Vector Cross Product

The cross product of two three-dimensional vectors & and ¥ is another vector 2, & X i = 2|
whose

1. direction is normal to the plane formed by the other two vectors,
2. direction is given by the right-hand rule, rotating from & to v/,

3. magnitude is the area of the parallelogram formed by the two vectors — the cross
product of two parallel vectors is zero — and

4. (signed) magnitude is equal to ||Z||||7]|sin @, where 0 is the angle between the two
vectors, measured from 7 to .

In terms of their components,

>

i j k (z2ys — 55392)?
XY =2 Ty 23 | =1 (391 — fl?/ﬁﬂ)i
Y1 Y2 Y3 (z1y2 — w211) K

13.2 Matrices
13.2.1 Definition

A matrix, or array, is equivalent to a set of column vectors of the same dimension, arranged
side by side, say
2 3
A=lab)=|1 3
7 2
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This matrix has three rows (m = 3) and two columns (n = 2); a vector is a special case of a
matrix with one column. Matrices, like vectors, permit addition and scalar multiplication.
We usually use an upper-case symbol to denote a matrix.

13.2.2 Multiplying a Vector by a Matrix

If A;; denotes the element of matrix A in the 7’th row and the j’th column, then the multi-
plication ¢ = A% is constructed as:

i = Apvr + Aty + - -+ Apun = Y Ajjuj,
j=1

where n is the number of columns in A. ¢ will have as many rows as A has rows (m). Note
that this multiplication is defined only if ¥ has as many rows as A has columns; they have
consistent inner dimension n. The product vA would be well-posed only if A had one row,
and the proper number of columns. There is another important interpretation of this vector
multiplication: Let the subscript : indicate all rows, so that each A is the j'th column
vector. Then

=AU = Aqv, + Agvg + -+ - + A u,.

We are multiplying column vectors of A by the scalar elements of .

13.2.3 Multiplying a Matrix by a Matrix

The multiplication C' = AB is equivalent to a side-by-side arrangement of column vectors
C,; = AB,, so that

C=AB=[AB, ABy --- AByl,
where k is the number of columns in matrix B. The same inner dimension condition applies

as noted above: the number of columns in A must equal the number of rows in B. Matrix
multiplication is:

1. Associative. (AB)C = A(BC).
2. Distributive. A(B+C) = AB+ AC, (B+(C)A= BA+ CA.

3. NOT Commutative. AB # BA, except in special cases.
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13.2.4 Common Matrices

Identity. The identity matrix is usually denoted I, and comprises a square matrix with
ones on the diagonal, and zeros elsewhere, e.g.,

100
Isys=10 1 0
0 01

The identity always satisfies Al x, = LnxmA = A.

Diagonal Matrices. A diagonal matrix is square, and has all zeros off the diagonal. For
instance, the following is a diagonal matrix:

4 0 0
A=10 -2 0
0 0 3

The product of a diagonal matrix with another diagonal matrix is diagonal, and in this case
the operation is commutative.

13.2.5 Transpose

The transpose of a vector or matrix, indicated by a T superscript results from simply swap-
ping the row-column indices of each entry; it is equivalent to “flipping” the vector or matrix
around the diagonal line. For example,

1
a—= 2 p—al= {123}
3
1 2
T e
8 9

A very useful property of the transpose is

(AB)T = BT AT,

13.2.6 Determinant

The determinant of a square matrix A is a scalar equal to the volume of the parallelepiped
enclosed by the constituent vectors. The two-dimensional case is particularly easy to re-
member, and illustrates the principle of volume:

det(A) = A1 Ay — AxAs
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1 -1
a[1 1)) < e

In higher dimensions, the determinant is more complicated to compute. The general formula
allows one to pick a row k, perhaps the one containing the most zeros, and apply

j=n
d(it(A) = Z Akj(—l)k+jAkj,
7j=1

where Ay; is the determinant of the sub-matrix formed by neglecting the £’th row and the
j’th column. The formula is symmetric, in the sense that one could also target the k’th
column:

det(A) = 3 Ay(—1)"T Ay

=1

<

<

If the determinant of a matrix is zero, then the matrix is said to be singular — there is no
volume, and this results from the fact that the constituent vectors do not span the matrix
dimension. For instance, in two dimensions, a singular matrix has the vectors colinear; in
three dimensions, a singular matrix has all its vectors lying in a (two-dimensional) plane.
Note also that det(A) = det(AT). If det(A) # 0, then the matrix is said to be nonsingular.

13.2.7 Inverse

The inverse of a square matrix A, denoted A", satisfies AA~' = A~'A = . Its computation
requires the determinant above, and the following definition of the n x n adjoint matrix:

(_1)1+1A11 L (_1)1+nA1n T

adj(A) =
(=)™ A, o (=D)AL
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Once this computation is made, the inverse follows from
-1 _ adj(A)
det(A)

If A is singular, i.e., det(A) = 0, then the inverse does not exist. The inverse finds common
application in solving systems of linear equations such as

—

Af=b— 7= A'b

13.2.8 Eigenvalues and Eigenvectors

A typical eigenvalue problem is stated as

AT = \T,

where A is an n X n matrix, Z is a column vector with n elements, and X is a scalar. We ask
for what nonzero vectors & (right eigenvectors), and scalars A (eigenvalues) will the equation
be satisfied. Since the above is equivalent to (A — X\ )# = 0, it is clear that det(A — \I) = 0.
This observation leads to the solutions for A; here is an example for the two-dimensional
case:

4 =5
A':[Q-ﬁl_*
4—-X =5
= 1 0]
det(A— M) = (4—=X)(=3—-X)+10
= X-)-2
A+1H)(A=2)
Thus, A has two eigenvalues, A\ = —1 and Ay = 2. Each is associated with a right eigenvector

Z. In this example,
(A—)\ll)fl = 6—>
R
T

(A_)\QI)fQ = 6—>

7, = {5v29/20, 2v29/20} .
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Eigenvectors are defined only within an arbitrary constant, i.e., if Z is an eigenvector then ¢’
is also an eigenvector for any ¢ # 0. They are often normalized to have unity magnitude, and
positive first element (as above). The condition that rank(A — \;1) = rank(A) — 1 indicates
that there is only one eigenvector for the eigenvalue \;; more precisely, a unique direction
for the eigenvector, since the magnitude can be arbitrary. If the left-hand side rank is less
than this, then there are multiple eigenvectors that go with \;.

The above discussion relates only the right eigenvectors, generated from the equation AZ =
AT. Left eigenvectors, defined as 47 A = A\ij’, are also useful for many problems, and can
be defined simply as the right eigenvectors of A”. A and AT share the same eigenvalues A,
since they share the same determinant. Example:

(AT - )\1[)371 - 6 —

5 2],
_5_2y1_

i = {2v29/20, —5v29/20}"

=11

—

—

=1}

(AT—AQI)gQ -
2 2|, =
[—5 —51” = 0=

Yo = {\/5/2, —\/§/Q}T.

13.2.9 Modal Decomposition

For simplicity, we consider matrices that have unique eigenvectors for each eigenvalue. The
right and left eigenvectors corresponding to a particular eigenvalue A can be defined to have
unity dot product, that is 7 ¢; = 1, with the normalization noted above. The dot products
of a left eigenvector with the right eigenvectors corresponding to different eigenvalues are
zero. Thus, if the set of right and left eigenvectors, V and W, respectively, is

V = [#--%,], and
W= (41 ¥,
then we have
WTv = I, or
wh = v

Next, construct a diagonal matrix containing the eigenvalues:
A 0

A= . :
0 An
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it follows that

Hence A can be written as a sum of modal components.?

AV

VA —
VAWT
ST\
=1

108

3By carrying out successive multiplications, it can be shown that A* has its eigenvalues at A\¥, and keeps

the same eigenvectors as A.



MIT OpenCourseWare
http://ocw.mit.edu

2.017J Design of Electromechanical Robotic Systems
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms

