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11 CONTROL FUNDAMENTALS 

11.1 Introduction 

11.1.1 Plants, Inputs, and Outputs 

Controller design is about creating dynamic systems that behave in useful ways. Many target 
systems are physical; we employ controllers to steer ships, fly jets, position electric motors 
and hydraulic actuators, and distill alcohol. Controllers are also applied in macro-economics 
and many other important, non-physical systems. 

It is the fundamental concept of controller design that a set of input variables acts through a 
given “plant” to create an output. Feedback control then uses sensed plant outputs to apply 
corrective plant inputs: 

Plant Inputs Outputs Sensors 
Jet aircraft elevator, rudder, etc. altitude, hdg altimeter, GPS 
Marine vessel rudder angle heading gyrocompass 
Hydraulic robot valve position tip position joint angle 
U.S. economy fed interest rate, etc. prosperity, inflation inflation, M1 
Nuclear reactor cooling, neutron flux heat, power level temp., pressure 

11.1.2 The Need for Modeling 

Effective control system design usually benefits from an accurate model of the plant, although 
it must be noted that many industrial controllers can be tuned up satisfactorily with no 
knowledge of the plant. Ziegler and Nichols, for example, developed a general heuristic recipe 
which we detail later. In any event, plant models simply do not match real-world systems 
exactly; we can only hope to capture the basic components in the form of differential or 
other equations. 

Beyond prediction of plant behavior based on physics, system identification generates a plant 
model from actual data. The process is often problematic, however, since the measured 
response could be corrupted by sensor noise or physical disturbances in the system which 
cause it to behave in unpredictable ways. At some frequency high enough, most systems 
exhibit effects that are difficult to model or reproduce, and this is a limit to controller 
performance. 

11.1.3 Nonlinear Control 

The bulk of this subject is taught using the tools of linear systems analysis. The main 
reason for this restriction is that nonlinear systems are difficult to model, difficult to design 
controllers for, and difficult overall! Within the paradigm of linear systems, there are many 
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sets of powerful tools available. The reader interested in nonlinear control is referred to the 
book by Slotine and Li (1991). 

11.2 Partial Fractions 

Partial fractions are presented here, in the context of control systems, as the fundamental link 
between pole locations and stability. Solving linear time-invariant systems by the Laplace 
Transform method will generally create a signal containing the (factored) form 

K(s + z1)(s + z2) · · · (s + zm)
Y (s) =  . (1)

(s + p1)(s + p2) · · · (s + pn) 

Although for the moment we are discussing the signal Y (s), later we will see that dynamic 
systems are described in the same format: in that case we call the impulse response G(s) 
a transfer function. A system transfer function is identical to its impulse response, since 
L(δ(t)) = 1. 

The constants −zi are called the zeros of the transfer function or signal, and −pi are the 
poles. Viewed in the complex plane, it is clear that the magnitude of Y (s) will go to zero at 
the zeros, and to infinity at the poles. 

Partial fraction expansions alter the form of Y (s) so that the simple first- and second-order 
transform pairs can be used to find the time-domain output signals. We must have m < n  
for this procedure; if this is not the case, then we have to strip off extra powers of s to solve 
the problem, and then add them back on at the end. 

11.2.1 Partial Fractions: Unique Poles 

Under the condition m < n, it is a fact that Y (s) is equivalent to 

a1 a2 an
Y (s) =  +  +  · · ·  , (2) 

s + p1 s + p2 s + pn 

in the special case that all of the poles are unique and real. The coefficient ai is termed the 
residual associated with the i’th pole, and once all these are found it is a simple matter to 
go back to the transform table and look up the time-domain responses. 

How to find ai? A simple rule applies: multiply the right-hand sides of the two equations 
above by (s + pi), evaluate them at s = −pi, and solve for ai, the only one left. 

Example: Partial Fractions with Unique Real Poles 

s(s + 6)  −2sG(s) =  e . 
(s + 4)(s − 1) 
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Since we have a pure delay and m = n, we can initially work with G(s)/se−2s. We  have  

s + 6  a1 a2 
= + , giving 

(s + 4)(s − 1) s + 4  s − 1 

� � 2 
a1 =	 (s+6)(s+4) = −

(s+4)(s−1) s=−4 5 � � 7(s+6)(s−1)a2 = 
(s+4)(s−1) s=1 

=
5 

Thus 

L−1(G(s)/se−2s) =  − 
2 
e −4t +

7 
e t −→ 

5 5 
8 7 

g(t) =  δ(t − 2) + e −4(t−2) + e t−2 . 
5 5 

The impulse response is needed to account for the step change at t = 2. Note that in 
this example, we were able to apply the derivative operator s after expanding the partial 
fractions. For cases where a second derivative must be taken, i.e., m ≥ n + 1, special care 
should be used when accounting for the signal slope discontinuity at t = 0. The more 
traditional method, exemplified by Ogata, may prove easier to work through. 

The case of repeated real roots may be handled elegantly, but this condition rarely occurs 
in applications. 

11.2.2 Partial Fractions: Complex-Conjugate Poles 

A complex-conjugate pair of poles should be kept together, with the following procedure: 
employ the form 

b1s + b2 a3
Y (s) =  + +  · · · ,	 (3)

(s + p1)(s + p2) s + p3 

∗where p1 = p2 (complex conjugate). As before, multiply through by (s + p1)(s + p2), and 
then evaluate at s = −p1. 

Example: Partial Fractions with Complex Poles 

s + 1  b1s + b2 a3
G(s) = 	 = + :  

s(s + j)(s − j) (s + j)(s − j) s 



� � 

� � 
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s + 1
= [b1s + b2]s=−j −→ 

s s=−j 

1 +  j = − b1j + b2 −→ 

b1 = − 1 

b2 = 1; also 
s + 1  

= a3 = 1. 
(s + j)(s − j) 

s=0 

Working out the inverse transforms from the table of pairs, we have simply (noting that 
ζ = 0)  

g(t) =  − cos t + sin t + 1(t). 

11.3 Stability in Linear Systems 

In linear systems, exponential stability occurs when all the real exponents of e are strictly 
negative. The signals decay within an exponential envelope. If one exponent is 0, the 
response never decays or grows in amplitude; this is called marginal stability. If at least one 
real exponent is positive, then one element of the response grows without bound, and the 
system is unstable. 

11.4 Stability ⇐⇒ Poles in LHP 

In the context of partial fraction expansions, the relationship between stability and pole 
locations is especially clear. The unit step function 1(t) has a pole at zero, the exponential 
e−at has a pole at − a, and so on. All of the other pairs exhibit the same property: A system 
is stable if and only if all of the poles occur in the left half of the complex plane. Marginally 
stable parts correlate with a zero real part, and unstable parts to a positive real part. 

11.5 General Stability 

There are two definitions, which apply to systems with input u(t) and output y(t). 

1.	 Exponential. If  u(t) = 0  and  y(0) = yo, then | y(t)| < αe−γt, for some finite α and 
γ >  0. The output asymptotically approaches zero, within a decaying exponential 
envelope. 

2.	 Bounded-Input Bounded-Output (BIBO). If  y(0) = 0, and | u(t)| < γ, γ > 0 and 
finite, then | y(t)| < α, α > 0 and finite. 
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In linear time-invariant systems, the two definitions are identical. Exponential stability is 
easy to check for linear systems, but for nonlinear systems, BIBO stability is usually easier 
to achieve. 

11.6 Representing Linear Systems 

The transfer function description of linear systems has already been described in the presen­
tation of the Laplace transform. The state-space form is an entirely equivalent time-domain 
representation that makes a clean extension to systems with multiple inputs and multiple 
outputs, and opens the way to many standard tools from linear algebra. 

11.6.1 Standard State-Space Form 

We write a linear system in a state-space form as follows 

ẋ =  Ax + Bu + Gw 

y = Cx + Du + v 

where 

•	 x is a state vector, with as many elements as there are orders in the governing differ­
ential equations. 

•	 A is a matrix mapping x to its derivative; A captures the natural dynamics of the 
system without external inputs. 

•	 B is an input gain matrix for the control input u. 

•	 G is a gain matrix for unknown disturbance w; w drives the state just like the control 
u. 

•	 y is the observation vector, comprised mainly of a linear combination of states Cx 
(where C is a matrix). 

•	 Du is a direct map from input to output (usually zero for physical systems). 

•	 v is an unknown sensor noise which corrupts the measurement. 
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11.6.2 Converting a State-Space Model into a Transfer Function 

Many different state-space descriptions can create the same transfer function - they are not 
unique. In the case of no disturbances or noise, the transfer function can be written as 

P (s) =  
y(s) 

= C(sI − A)−1B + D, 
u(s) 

where I is the identity matrix with the same size as A. To see that this is true, simply 
transform the differential equation into frequency space: 

sx(s) =  Ax(s) +  Bu(s) −→ 

x(s)(sI − A) =  Bu(s) −→ 

x(s) = (sI − A)−1Bu(s) −→ 

y(s) =  Cx(s) +  Du(s) =  C(sI − A)−1Bu(s) +  Du(s). 

A similar equation holds for y(s)/w(s), and clearly y(s)/v(s) = 1.  

11.6.3 Converting a Transfer Function into a State-Space Model 

Because state-space models are not unique, there are many different ways to create them 
from a transfer function. In the simplest case, it may be possible to write the corresponding 
differential equation along one row of the state vector, and then cascade derivatives. 
example, consider the following system: 

my ′′(t) +  by′(t) +  ky(t) =  u ′(t) +  u(t) (mass-spring-dashpot) 
s + 1  

P (s) =  
ms2 + bs + k 

Setting �x = [y′, y]T , we obtain the system 

d�x 
� − b/m − k/m 

� � 
1/m 

� 

= �x + u 
dt 1 0 0 

y = [1  1]  �x 
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Note specifically that dx2/dt = x1, leading to an entry of 1 in the off-diagonal of the second 
row in A. Entries in the C-matrix are easy to write in this case because of linearity; the 
system response to u′ is the same as the derivative of the system response to u. 

11.7 Block Diagrams and Transfer Functions of Feedback Systems 

11.7.1 Block Diagrams: Fundamental Form 

The topology of a feedback system can be represented graphically by considering each dy­
namical system element to reside within a box, having an input line and an output line. For 
example, a simple mass driven by a controlled force has transfer function P (s) = 1/ms2 , 
which relates the input, force u(s), into the output, position y(s). In turn, the PD-controller 
(see below) has transfer function C(s) =  kp + kds; its input is the error signal e(s) =  −y(s), 
and its output is force u(s) =  −(kp + kds)y(s). This feedback loop in block diagram form is 
shown below. 

e u y 
C(s) 

_ 
P(s) 

11.7.2 Block Diagrams: General Case 

The simple feedback system above is augmented in practice by three external inputs. The 
first is a process disturbance we call d, which can be taken to act at the input of the physical 
plant, or at the output. In the former case, it is additive with the control action, and so has 
some physical meaning. In the second case, the disturbance has the same units as the plant 
output. 

Another external input is the reference command or setpoint, used to create a more general 
error signal e(s) =  r(s) − y(s). Note that the feedback loop, in trying to force e(s) to zero, 
will necessarily make y(s) approximate r(s). 

The final input is sensor noise n, which usually corrupts the feedback signal y(s), causing 
some error in the evaluation of e(s), and so on. Sensors with very poor noise properties can 
ruin the performance of a control system, no matter how perfectly understood are the other 
components. 

Note that the disturbances du and dy, and the noise n are generalizations on the unknown 
disturbance and sensor noise we discussed at the beginning of this section. 
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11.7.3 Transfer Functions 

Some algebra applied to the above figure (and neglecting the Laplace variable s) shows that 

e 1 
= = S 

r 1 +  PC  
y  PC  

= = T 
r 1 +  PC  
u C 

= = U. 
r 1 +  CP 

Let us derive the first of these. Working directly from the figure, we have 

e(s) =  r(s) − y(s) 

e(s) =  r(s) − P (s)u(s) 

e(s) =  r(s) − P (s)C(s)e(s) 

(1 + P (s)C(s))e(s) =  r(s) 
e(s) 1 

= . 
r(s)  1 +  P (s)C(s) 

The fact that we are able to make this kind of construction is a direct consequence of the 
frequency-domain representation of the system, and namely that we can freely multiply and 
divide system impulse responses and signals, so as to represent convolutions in the time-
domain. 

Now e/r = S relates the reference input and noise to the error, and is known as the sensitivity 
function. We would generally like S to be small at certain frequencies, so that the non-
dimensional tracking error e/r there is small. y/r = T is called the complementary sensitivity 
function. Note that S + T = 1, implying that these two functions must always trade off; 
they cannot both be small or large at the same time. Other systems we encounter again 
later are the (forward) loop transfer function PC, the loop transfer function broken between 
C and P : CP , and some others: 

e −P 
= 

du 1 +  PC  
y P 

= 
du 1 +  PC  



� 
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u −CP 
= 

du 1 +  CP 
e −1 

= = −S 
dy 1 +  PC  
y 1 

= = S 
dy 1 +  PC  
u −C 

= = −U 
dy 1 +  CP 
e −1 

= = −S 
n 1 +  PC  
y −PC  

= = −T 
n 1 +  PC  
u −C 

= = −U. 
n 1 +  CP 

If the disturbance is taken at the plant output, then the three functions S, T , and U (con­
trol action) completely describe the system. This will be the procedure when we address 
loopshaping. 

11.8 PID Controllers 

The most common type of industrial controller is the proportional-integral-derivative (PID) 
design. If u is the output from the controller, and e is the error signal it receives, this control 
law has the form 

t 
u(t) =  kpe(t) +  ki e(τ)dτ + kde ′(t), 

0 

U(s) ki
C(s) =  =  kp + + kds 

E(s) s 
1 

= kp 1 +  +  τds ,
τis 

where the last line is written using the conventions of one overall gain kp, plus a time 
characteristic to the integral part (τi) and and time characteristic to the derivative part (τd). 

In words, the proportional part of this control law will create a control action that scales 
linearly with the error – we often think of this as a spring-like action. The integrator is 
accumulating the error signal over time, and so the control action from this part will continue 
to grow as long as an error exists. Finally, the derivative action scales with the derivative of 
the error. This will retard motion toward zero error, which helps to reduce overshoot. 

The common variations are: P , PD, PI, PID. 
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11.9 Example: PID Control 

Consider the case of a mass (m) sliding on a frictionless table. It has a perfect thruster 
that generates force u(t), but is also subject to an unknown disturbance d(t). If the linear 
position of the mass is y(t), and it is perfectly measured, we have the plant 

my ′′(t) =  u(t) +  d(t). 

Suppose that the desired condition is simply y(t) = 0, with initial conditions y(0) = yo and 
y′(0) = 0. 

11.9.1 Proportional Only 

A proportional controller alone invokes the control law u(t) =  −kpy(t), so that the closed-
loop dynamics follow 

my ′′(t) =  −kpy(t) +  d(t). 

In the absence of d(t), we see that y(t) =  yo cos k
m 
p t, a marginally stable response that is 

undesirable. 

11.9.2 Proportional-Derivative Only 

Let u(t) =  −kpy(t) − kdy
′(t), and it follows that 

my ′′(t) =  −kpy(t) − kdy ′(t) +  d(t). 

The system now resembles a second-order mass-spring-dashpot system where kp plays the 
part of the spring, and kd the part of the dashpot. With an excessively large value for 
kd, the system would be overdamped and very slow to respond to any command. In most 
applications, a small amount of overshoot is tolerated because the response time is shorter. 
The kd value for critical damping in this example is 2 mkp, and so the rule is kd < 2 mkp. 
The result, easily found using the Laplace transform, is 

−kd t kd 
2my(t) =  yoe cos ωdt + sin ωdt ,

2mωd 

where ωd = 4mkp − kd 
2/2m. This response is exponentially stable as desired. Note that if 

the mass had a very large amount of natural damping, a negative kd could be used to cancel 
some of its effect and speed up the system response. 

Now consider what happens if d(t) has a constant bias do: it balances exactly the proportional 
control part, eventually settling out at y(t = ∞) =  do/kp. To achieve good rejection of do 

with a PD  controller, we would need to set kp very large. However, very large values of kp 

will also drive the resonant frequency ωd up, which is unacceptable. 
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11.9.3 Proportional-Integral-Derivative 

Now let u(t) =  −kpy(t) − ki 0 
t y(τ)dτ − kdy

′(t): we have 

t 
my ′′(t) =  −kpy(t) − ki y(τ)dτ − kdy ′(t) +  d(t). 

0 

The control system has now created a third-order closed-loop response. If d(t) =  do, a time 
derivative leads to 

my ′′′(t) +  kpy ′(t) +  kiy(t) +  kdy ′′(t) = 0, 

so that y(t = ∞) = 0, as desired, provided the roots are stable. Note that for the case of the 
PD  control, it was enough to select kp positive and kd positive because these terms represent 
spring and dashpot-type forces. The use of ki complicates the stability however, and it is 
not enough in general to set all three gains positive - stability should be checked explicitly. 

11.10 Heuristic Tuning 

For many practical systems, tuning of a PID controller may proceed without any system 
model. This is especially pertinent for plants which are open-loop stable, and can be safely 
tested with varying controllers. One useful approach is due to Ziegler and Nichols (e.g., 
Bélanger,1995), which transforms the basic characteristics of a step response (e.g., the input 
is 1(t)) into a reasonable PID design. The idea is to approximate the response curve by a 
first-order lag (gain k and time constant τ) and a pure delay T : 

ke−Ts  

P (s) � 
τs + 1  

The following rules apply only if the plant contains no dominating, lightly-damped complex 
poles, and has no poles at the origin: 

P kp = 1.0τ/T  
PI kp = 0.9τ/T  ki = 0.27τ/T 2 

PID kp = 1.2τ/T  ki = 0.60τ/T 2 kd = 0.60τ 

Note that if no pure time delay exists (T = 0), this recipe suggests the proportional gain can 
become arbitrarily high! Any characteristic other than a true first-order lag would therefore 
be expected to cause a measurable delay. 
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