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7 OPTIMIZATION 

The engineer is continually faced with non-trivial decisions, and discerning the best among 
alternatives is one of the most useful and general tasks that one can master. Optimization 
exists because in nearly every endeavor, one is faced with tradeoffs. Here are some examples: 

•	 Contributing to savings versus achieving enjoyment from purchases made now; 

•	 Buying an expensive bicycle from one of many manufacturers - you are faced with 
choices on accessories, weight, style, warranty, performance, reputation, and so on; 

•	 Writing a very simple piece of code that can solves a particular problem versus devel­
oping a more professional and general-use product; 

•	 Size of the column to support a roof load; 

•	 How fast to drive on the highway; 

•	 Design of strength bulkheads inside an airplane wing assembly 

The field of optimization is very broad and rich, with literally hundreds of different classes of 
problems, and many more methods of solution. Central to the subject is the concept of the 
parameter space denoted as X , which describes the region where specific decisions x may lie. 
For instance, acceptable models of a product off the shelf might be simply indexed as x i. x 
can also be a vector of specific or continuous variables, or a mixture of the two. Also critical 
is the concept of a cost f (x ) that is associated with a particular parameter set x . We  can  

∗say that f will be minimized at the optimal set of parameters x : 

f (x ∗ ) = min f (x ). 
xεX 

We will develop in this section some methods for continuous parameters and others for 
discrete parameters. We will consider some concepts also from planning and multi-objective 
optimization, e.g., the case where there is more than one cost function. 

7.1 Single-Dimension Continuous Optimization 

Consider the case of only one parameter, and one cost function. When the function is known 
and is continuous - as in many engineering applications - a very reasonable first method to 
try is to zero the derivative. In particular, 

df (x ) 
= 0. 

dx 
x=x∗ 

The user has to be aware even in this first problem that there can exist multiple points with

zero derivative. These are any locations in X where f (x ) is flat, and indeed these could be
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at local minima and at local and global maxima. Another important point to note is that if 
X is a finite domain, then there may be no location where the function is flat. In this case, 
the solution could lie along the boundary of X, or take the minimum within X. In the figure 
below, points A and C are local maxima, E is the global maxima, B and D are local minima, 
and F is the global minimum shown. However, the solution domain X does not admit F, so 
the best solution would be B. In all the cases shown, however, we have at the maxima and 
minima f ′(x) = 0. Furthermore, at maxima f ′′(x) < 0, and at minima f ′′(x) > 0. 

X 

A 

B 

C 

D 

E 

F 

x 

We say that a function f(x) is  convex if and only if it has everywhere a nonnegative second 
derivative, such as f(x) =  x2 . For a convex function, it should be evident that any minimum 
is in fact a global minimum. (A function is concave if −f(x) is convex.) Another important 
fact of convex functions is that the graph always lies above any points on a tangent line, 
defined by the slope at point of interest: 

f(x + δx) ≥ f(x) +  f ′(x)δ 

When δ is near zero, the two sides are approximately equal. 

∗Suppose that the derivative-zeroing value x cannot be deduced directly from the derivative. 
We need another way to move toward the minimum. Here is one approach: move in the 
downhill direction by a small amount that scales with the inverse of the derivative. Letting 
δ = −γ/f ′(x), makes the above equation 

f(x + δ) ≈ f(x) − γ 

The idea is to take small steps downhill, e.g., xk+1 = xk + δ where k indicates the k’th 
guess, and this algorithm is usually just called a gradient method, or something similarly 
nondescript! While it is robust, one difficulty with this algorithm is how to stop, because it 
tries to move a constant decrement in f at each step. It will be unable to do so near a flat 
minimum, although one can of course to modify γ on the fly to improve convergence. 

As another method, pose a new problem in which g(x) =  f ′(x), and we now have to solve 
g(x ∗) = 0. Finding the zero of a function is an important problem on its own. Now the 
convexity inequality above resembles the Taylor series expansion, which is rewritten here in 
full form: 

g(x + δ) =  g(x) +  g ′(x)δ +
1 

g ′′(x)δ2 +
1 

g ′′′(x)δ3 + · · ·  
2! 2! 
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The expansion is theoretically true for any x and any δ (if the function is continuous), and 
so clearly g(x + δ) can be at least approximated by the first two terms on the right-hand 
side. If it is desired to set g(x + δ) = 0, then we will have the estimate 

δ = − g(x)/g′(x). 

This is Newton’s first-order method for finding the zero of a function. The idea is to shoot 
down the tangent line to its own zero crossing, and take the new point as the next guess. 
As shown in the figure, the guesses could go wildly astray if the function is too flat near the 
zero crossing. 

x1 x2 x3 

g(x) 

x 

Let us view this another way. Going back to the function f and the Taylor series approxi­
mation 

1 
f(x + δ) ≈ f(x) +  f ′(x)δ + f ′′(x)δ2 ,

2! 

we can set to zero the left-hand side derivative with respect to δ, to obtain 

0 ≈ 0 +  f ′(x) +  f ′′(x)δ −→ 

δ = − f ′(x)/f ′′(x). 

This is the same as Newton’s method above since f ′(x) =  g(x). It clearly employs both first 
and second derivative information, and will hit the minimum in one shot(!) if the function 
truly is quadratic and the derivatives f ′(x) and  f ′′(x) are accurate. In the next section 
dealing with multiple dimensions, we will develop an analogous and powerful form of this 
method. Also in the next section, we refer to a line search, which is merely a one-dimensional 
minimization along a particular direction, using a (unspecified) one-dimensional method ­
such as Newton’s method applied to the derivative. 

7.2 Multi-Dimensional Continuous Optimization 

Now we consider that the cost function f is a function of more than one variable. X is a 
multi-dimensional space, and x is a vector. We consider again continuous functions. At the 
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minima, as for the single-dimension case, we have certain conditions for the first and second 
derivatives: 

∇f(x∗) = [fx1 , fx2 , · · ·]x=x ∗ = [0, 0, · · ·] ⎡ ⎤ 
fx1x1 fx1x2 ⎢ ⎥∇2f(x) =  ⎣ fx2x1 fx2x2 ⎦ > 0, 

· · ·  ∗ x=x 

where the notation that a matrix is greater than zero denotes that it is positive definite. 
We will present three practical methods for finding the minimum. First is the method of 
steepest descent. The idea here is to find the downhill direction and take a step δ that way: 

e = −∇f(x)/||∇f(x)||
δ = γe. 

Note that, as written, this is a different algorithm than the first method given in one dimen­
sion, because here the direction vector e is normalized, and hence the magnitude of the step 
in x is the same no matter what the steepness of the function. We note also that there exists 
a value α such that x+αe is the minimizing argument of f , along the e direction and passing 
through the point x. This is the result of the so-called line search, and a reasonable steepest 
descent procedure is to perform iteratively a two-step procedure of a gradient calculation 
followed by a line search in the downhill direction. 

The performance of successive line searches can be quite good, or very poor. Poor perfor­
mance results in some cases because the successive downhill directions are constrained to 
be orthogonal to each other. This has to be the case because at the minimum on the line, 
the gradient in the direction of the line is zero by definition. In fact none of these downhill 
directions may actually point to the minimum, and so many pointless steps might be taken. 
A solution to this is the conjugate gradient method, wherein we make a useful modification 
to the downhill directions used for each of the line searches. 

We will call the downhill direction vector corresponding with the k’th guess dk. Letting 
g(x) =  ∇f(x) and  d0 = −g(x0), we will let dk+1 = −g(xk+1) +  βdk; this says that we will 
deflect the next search direction from the downhill direction by the term βdk; the scalar 
factor β is given by 

g(xk+1)
T g(xk+1)

β = 
g(xk)T g(xk) 

Note here that d is not normalized. The algebra needed to derive this rule is not difficult, 
and a simple example will illustrate that it is a very powerful one. 

Finally, we mention Newton’s second-order method in multiple dimensions, using the second 
derivative. It comes from the multivariable version of the Taylor series expansion: 

1 
f(x + δ) ≈ f(x) +  ∇f(x)δ + δT ∇2f(x)δ. 

2 



7 OPTIMIZATION 50 

Following from the one-dimensional case, we try to select δ so as to cause ∂f(x + δ)/∂δ = 0.  
This gives 

−∇ f(x) =  δT ∇ 2f(x) −→ 

δ = − [∇ 2f(x)]−1∇ f(x). 

In words, Newton’s method takes the first and second-derivative information and tries to 
come up with a specific solution in one step. The algorithm has extremely good convergence 
properties and is recommended when second derivatives are available. 

It is important to understand that both the conjugate gradient method and Newton’s second-
order method get the exact answer in two (conjugate gradient) or one (Newton) tries, when 
in fact the function is quadratic. Thinking of computational cost, the conjugate gradient 
algorithm has to have the derivative vector at two points, whereas Newton has to have the 
gradient plus the Hessian matrix, at the starting point. If these derivatives have to be created 
numerically and with accuracy, it is clear that the Hessian could be quite expensive. For 
this reason, the conjugate gradient method may be preferred. 

For non-quadratic forms, these algorithms will both do the best they can to approximate and 
it will take some additional trials. An elegant combination of gradient and Newton methods 
is found in the Levenberg-Marquardt algorithm. 
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7.3 Linear Programming 

We now consider the case that the cost is a linear function of n parameters. There is clearly 
no solution unless the parameter space is constrained, and indeed the solution is guaranteed 
to be on the boundary. The situation is well illustrated in two dimensions (n = 2),  an  
example of which is shown below. Here, five linear inequality boundaries are shown; no x 
are allowed outside of the feasible region. In the general case, both equality and inequality 
constraints may be present. 

decreasing cost 

Feasible 

solutions 

x1 

x2 

The nature of the problem - all linear, and comprising inequality and possibly equality 
constraints - admits special and powerful algorithms that are effective even in very high 
dimensions, e.g., thousands. In lower dimensions, we can appeal to intuition gained from 
the figure to construct a simpler method for small systems, say up to ten unknowns. 

Foremost, it is clear from the figure that the solution has to lie on one of the boundaries. The 
solution in fact lies at a vertex of n hypersurfaces of dimension n − 1. Such a hypersurface 
is a line in two dimensional space, a plane in three-space, and so on. We will say that a line 
in three-space is an intersection of two planes, and hence is equivalent to two hypersurfaces 
of dimension two. It can be verified that a hypersurface of dimension n − 1 is defined with 
one equation. 

If there are no equality constraints, then these n hypersurfaces forming the solution vertex 
are a subset of the I inequality constraints. We will generally have I > n. If there are also 
E < n equality constraints, then the solution lies at the intersection of these E equality 
hypersurfaces and n − E other hypersurfaces taken from the I inequality constraints. Of 
course, if E = n, then we have only a linear system to solve. Thus we have a combinatorics 
problem; consider the case of inequalities only, and then the mixed case. 

•	 I inequalities, no equalities. n of the inequalities will define the solution vertex. 
The number of combinations of n constraint equations among I choices is I!/(I−n)!n!. 
Algorithm: For each combination (indexed k, say) in turn, solve the linear system of 
equations to find a solution xk. Check that the solution does not violate any of the 
other I − n inequality constraints. Of all the solutions that are feasible (that is, they 
do not violate any constraints), pick the best one - it is optimal. 

•	 I inequalities, E equalities. The solution involves all the equalities, and n − E 
inequality constraints. The number of combinations of n − E constraint equations 
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among I choices is I!/(I − n+ E)!(n− E)!. Algorithm: For each combination (indexed 
with k) in turn, solve the linear set of equations, to give a candidate solution xk. Check  
that the solution does not violate any of the remaining I−n+E inequality constraints. 
Of all the feasible solutions, pick the best one - it is optimal. 

The above rough recipe assumes that none of the hypersurfaces are parallel; parallel con­
straints will not intersect and no solution exists to the linear set of equations. Luckily such 
cases can be detected easily (e.g., by checking for singularity of the matrix), and classified 
as infeasible. In the above figure, I = 5,  and  n = 2. Hence there are 5!/(5 − 2)!2! = 10 
combinations to try: AB, AC, AD, AE, BC, BD, BE, CD, CE, DE. Only five are evident, 
because some of the intersections are outside of the area indicated (Can you find them all?). 

The linear programming approach is extremely valuable in many areas of policy and finance, 
where costs scale linearly with quantity, and inequalities are commonplace. There are also 
a great many engineering applications, because of the prevalence of linear analysis. 

7.4 Integer Linear Programming 

Sometimes the constraint and cost functions are continuous, but only integer solutions are 
allowed. Such is the case in commodities markets, where it is expected that one will deal in 
tons of butter, whole automobiles, and so on. The image below shows integer solutions within 
a feasible domain defined by continuous function inequalities. Note that the requirement of 
an integer solution makes it far less obvious how to select the optimum point; it is no longer 
a vertex. 

x1 

x2 

The branch-and-bound method comes to the rescue. In words, what we will do is succes­
sively solve continuous linear programming problems, but while imposing new inequality 
constraints that force the elements into taking integer values. 

The method uses two major concepts. The first has to do with bounds and is quite intuitive. 
¯Suppose that in a solution domain X1, the cost has a known upper bound f1, and that in a 

¯different domain X2, the cost has a known lower bound f . Suppose further that f1 < f  . 
2 2 

If it is desired to minimize the function, then such a comparison clearly suggests we need 
spend no more time working in X2. The second concept is that of a branching tree, and an 
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example is the best way to proceed here. We try to maximize1 

J = 1000x1 + 700x2, subject to 

100x1 + 50x2 ≤ 2425 and 

x2 ≤ 25.5, 

with both x1, x2 positive integers. 
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x

1 

Hence we have four inequality constraints; the problem is not dissimilar to what is shown in 
the above figure. First, we solve the continuous linear programming problem, finding 

A : J = 29350 : x1 = 11.5, x2 = 25.5. 

Clearly, because neither of the solution elements is an integer, this solution is not valid. But 
it does give us a starting point in branch and bound: Branch this solution into two, where 
we consider the integers x2 closest to 25.5: 

B : J(x2 ≤ 25) = 29250 : x1 = 11.75, x2 = 25  and  

C : J(x2 ≥ 26) = X, 

where the X indicates we have violated one of our original constraints. So there is nothing 
more to consider along the lines of C. But we pursue B because it still has non-integer 
solutions, branching x1 into 

D : J(x1 ≤ 11, x2 ≤ 25) = 28500 : x1 = 11, x2 = 25  and  

E : J(x1 ≥ 12, x2 ≤ 25) = 29150 : x1 = 12, x2 = 24.5. 

1This problem is from G. Sierksma, Linear and integer programming, Marcel Dekker, New York, 1996. 
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D does not need to be pursued any further, since it is has integer solutions; we store D as a 
possible optimum. Expanding E in x2, we get  

F : J(x1 ≥ 12, x2 ≤ 24) = 29050 : x1 = 12.25, x2 = 24, and 

G : J(x1 ≥ 12, x2 ≥ 25) = X. 

G is infeasible because it violates one of our original inequality constraints, so this branch 
dies. F has non-integer solutions so we branch in x1: 

H : J(x1 ≤ 12, x2 ≤ 24) = 28800 : x1 = 12, x2 = 24  and  

I : J(x1 ≥ 13, x2 ≤ 24) = 28750 : x1 = 13, x2 = 22.5. 

Now I is a non-integer solution, but even so it is not as good as H, which does have integer 
solution; so there is nothing more to pursue from I. H is better than D, the other available 
integer solution - so it is the optimal. 
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There exist many commercial programs for branch-and-bound solutions of integer linear pro­
gramming problems. We implicitly used the upper-vs.-lower bound concept in terminating 
at I: if a non-integer solution is dominated by any integer solution, no branches from it can 
do better either. 

7.5 Min-Max Optimization for Discrete Choices 

A common dilemma in optimization is the existence of multiple objective functions. For 
example, in buying a motor, we have power rating, weight, durability and so on to consider. 
Even if it were a custom job - in which case the variables can be continuously varied - the 
fact of many objectives makes it messy. Clean optimization problems minimize one function, 
but if we make a meta-function out of many simpler functions (e.g., a weighted sum), we 
invariably find that the solution is quite sensitive to how we constructed the meta-function. 
This is not as it should be! The figure below shows on the left a typical tradeoff of objectives 
- one is improved at the expense of another. Both are functions of the underlying parameters. 
Constructing a meta-objective on the right, there is a indeed a minimum (plotted against 
J1(x)), but its location depends directly on γ. 

J1(x) 

J2(x) 

J1(x) 

J = J1 + JJ2 
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A very nice resolution to this problem is the min-max method. What we look for is the 
candidate solution with the smallest normalized deviation from the peak performance across 
objectives. Here is an example that explains. Four candidates are to be assessed according 
to three performance metrics; higher is better. They have raw scores as follows: 

Metric I Metric II Metric III

Candidate A 3.5 9 80 
Candidate B 2.6 10 90 
Candidate C 4.0 8.5 65 
Candidate D 3.2 7.5 86 

Note that each metric is evidently given on different scales. Metric I is perhaps taken out of 
five, Metric II is out of ten perhaps, and Metric III could be out of one hundred. We make 
four basic calculations: 

•	 Calculate the range (max minus the min) for each metric: we get [1.4, 2.5, 35]. 

•	 Pick out the maximum metric in each metric: we have [4.0, 10, 90]. 

•	 Finally, replace the entries in the original table with the normalized deviation from the 
best: 

Metric I Metric II Metric III 
Candidate A 
Candidate B 
Candidate C 
Candidate D 

(4.0-3.5)/1.4 = 0.36 
(4.0-2.6)/1.4 = 1 
(4.0-4.0)/1.4 = 0 

(4.0-3.2)/1.4 = 0.57 

(10-9)/2.5 = 0.4 
(10-10)/2.5 = 0 

(10-8.5)/2.5 = 0.6 
(10-7.5)/2.5 = 1 

(90-80)/35 = 0.29 
(90-90)/35 = 0 
(90-65)/35 = 1 

(90-86)/35 = 0.11 

•	 For each candidate, select the worst (highest) deviation: we get [0.4, 1, 1, 1]. 

The candidate with the lowest worst (min of the max!) deviation is our choice: Candidate 
A. 

The min-max criterion can break a log-jam in the case of multiple objectives, but of course 
it is not without pitfalls. For one thing, are the metrics all equally important? If not, would 
a weighted sum of the deviations add any insight? We also notice that the min-max will 
throw out a candidate who scores at the bottom of the pack in any metric; this may or may 
not be perceived as fair. In broader terms, such decision-making can have fascinating social 
aspects. 

7.6 Dynamic Programming 

We introduce a very powerful approach to solving a wide array of complicated optimization 
problems, especially those where the space of unknowns is very high, e.g., it is a trajectory 
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itself, or a complex sequence of actions, that is to be optimized. Only an introductory 
description here is given, focussing on shortest-path problems. A great many procedure and 
planning applications can be cast as shortest-path problems. 

We begin with the essential concept. Suppose that we are driving from Point A to Point C, 
and we ask what is the shortest path in miles. If A and C represent Los Angeles and Boston, 
for example, there are many paths to choose from! Assume that one way or another we have 
found the best path, and that a Point B lies along this path, say Las Vegas. Let X be an 
arbitrary point east of Las Vegas. If we were to now solve a new optimization problem for 
getting only from Las Vegas to Boston, this same arbitrary point X would be along the new 
optimal path as well. 

The point is a subtle one: the optimization problem from Las Vegas to Boston is easier than 
that from Los Angeles to Boston, and the idea is to use this property backwards through 
time to evolve the optimal path, beginning in Boston. 
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Example: Nodal Travel. We now add some structure to the above experiment. Consider 
now traveling from point A (Los Angeles) to Point D (Boston). Suppose there are only three 
places to cross the Rocky Mountains, B1, B2, B3, and three places to cross the Mississippi 
River, C1, C2, C3. By way of notation, we say that the path from A to B1 is AB1. Suppose 
that all of the paths (and distances) from A to the B-nodes are known, as are those from the 
B-nodes to the C-nodes, and the C-nodes to the terminal point D. There are nine unique 
paths from A to D. 

A brute-force approach sums up the total distance for all the possible paths, and picks the 
shortest one. In terms of computations, we could summarize that this method requires nine 
additions of three numbers, equivalent to eighteen additions of two numbers. The comparison 
of numbers is relatively cheap. 

The dynamic programming approach has two steps. First, from each B-node, pick the 
best path to D. There are three possible paths from B1 to D, for example, and nine 
paths total from the B-level to D. Store the best paths as B1D|opt, B2D|opt, B3D|opt. This 
operation involves nine additions of two numbers. Second, compute the distance for each of 
the possible paths from A to D, constrained to the optimal paths from the B-nodes onward: 
AB1 + B1D|opt, AB2 + B2D|opt, or  AB3 + B3D|opt. The combined path with the shortest 
distance is the total solution; this second step involves three sums of two numbers, and the 
total optimization is done in twelve additions of two numbers. 
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Needless to say, this example gives only a mild advantage to the dynamic programming 
approach over brute force. The gap widens vastly, however, as one increases the dimensions 
of the solution space. In general, if there are s layers of nodes (e.g., rivers or mountain 
ranges), and each has width n (e.g., n river crossing points), the brute force approach will 
take (sns) additions, while the dynamic programming procedure involves only (n2(s−1)+n) 
additions. In the case of n = 5,  s = 5, brute force requires 15625 additions; dynamic 
programming needs only 105! 

7.7 Solving Dynamic Programming on a Computer 

Certainly the above algorithm can be implemented as written - moving backward from the 
end to the beginning, keeping track at each stage only of the optimal trajectories from that 
stage forward. This decision will involve some careful recording and indexing. A very simple 
algorithm called value iteration may be more accessible on your first try. As we will show in 
an example below, value iteration also allows us to consider problems where distinct stages 
are not clear. 

It goes this way: 

1. Index all of the possible configurations, or nodes, of the system (cities). 

2. With each configuration, create a list of where we can go to from that node - probably 
this is a list of indices (cities that are plausibly part of an optimal path). The starting 
node (Los Angeles) is pointed to by no other nodes, whereas the end node (Boston) 
points to none. 

3. For each of these simple paths defined from node to node, assign a cost of transition 
(simple driving miles between the cities). 

4. Now assign to each of these configurations an initial guess for what is the cost from 
this node to the end state (optimum total miles from each city to Boston). Clearly the 
costs-to-go for nodes that point to the terminal node are well-known, but none of the 
others are. 

5. Sweep through all the configurations (except the terminal one), picking the best path 
out, based on the local path and the estimated cost at the next node. At each node, we 
have only to keep track of the best next node index, and the new estimated cost-to-go. 

6. Repeat to convergence! 

This algorithm can be shown to converge always, and has a number of variants and enhance­
ments. An example makes things clearer: 
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Node Points to Nodes With Costs Initial Estimate of Cost to Go

A (initial) B,C,D 4,2,6 10 

B C,D,E 3,2,5 10 
C D,E 6,5 10 
D  E  2  2  (known) 
E (terminal) NA NA 

B 2 
D 

E 
C 

And here is the evolution of the value iteration: 

A 

4 
6 

2 

3 6 
5 
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5 

(start) 

(end) 

A B C D 
iteration cost-to-go cost-to-go cost-to-go cost-to-go 

0  NA  10  10  2(E) 

1 min(14,12,8) = 8(D,E) min(13,4,5) = 4(D,E) min(8,5) = 5(E) 2(E)

2 min(8,7,8) = 7(C,E) 4(D,E) 5(E) 2(E)


We can end safely after the second iteration because the path from A involves C, which 
cannot change from its value after the first iteration, because it connects all the way through 
to E. 



MIT OpenCourseWare
http://ocw.mit.edu 

2.017J Design of Electromechanical Robotic Systems 
Fall 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

