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3 PROBABILITY 

In this section, we discuss elements of probability, as a prerequisite for studying random 
processes. 

3.1 Events 

Define an event space S that has in it a number of events Ai. If the set of possible events Ai 

covers the space completely, then we will always get one of the events when we take a sample. 
On the other hand, if some of the space S is not covered with an Ai then it is possible that 
a sample is not classified as any of the events Ai. Events  Ai may be overlapping in the event 
space, in which case they are composite events; a sample may invoke multiple events. But 
the Ai may not overlap, in which case they are simple events, and a sample brings only one 
event Ai, or none if the space S is not covered. In the drawing below, simple events cover 
the space on the left, and composite events cover the space on the right. 
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Intuitively, the probability of an event is the fraction of the number of positive outcomes to 
the total number of outcomes. Assign to each event a probability, so that we have 

pi = p(Ai) ≥ 0 

p(S) = 1. 

That is, each defined event Ai has a probability of occurring that is greater than zero, and 
the probability of getting a sample from the entire event space is one. Hence, the probability 
has the interpretation of the area of the event Ai. It follows that the probability of Ai is 
exactly one minus the probability of Ai not occuring: 

p(Ai) = 1  − p(Āi). 

Furthermore, we say that if Ai and Aj are non-overlapping, then the probability of either Ai 

or Aj occuring is the same as the sum of the separate probabilities: 

p(Ai ∪ Aj ) =  p(Ai) +  p(Aj ). 
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Similarly if the Ai and Aj do overlap, then the probability of either or both occurring is the 
sum of the separate probabilities minus the sum of both occurring: 

p(Ai ∪ Aj ) =  p(Ai) +  p(Aj ) − p(Ai ∩ Aj). 

As a tangible example, consider a six-sided die. Here there are six events A1, A2, A3, A4, A5, A6, 
corresponding with the six possible values that occur in a sample, and p(Ai) = 1/6 for all i. 
The event that the sample is an even number is M = A2 ∪A4 ∪A6, and this is a composite 
event. 

3.2 Conditional Probability 

If a composite event M is known to have occurred, a question arises as to the probability 
that one of the constituent simple events Ai occurred. This is written as P (Aj |M), read as 
”the probability of Aj , given M ,” and this is a conditional probability. The key concept here 
is that M replaces S as the event space, so that p(M) = 1. This will have the natural effect 
of inflating the probabilities of events that are part of event M , and in fact 

p(Aj |M) =  
p(Aj ∩ M) 

. 
p(M) 

Referring to our die example above, if M is the event of an even result, then we have 

M = A2 ∪ A4 ∪ A6 

p(M ∩ A2) =  p(A2) = 1/6 

p(M) = 1/2 −→ 
1/6 

p(A2|M) =  
1/2

= 1/3. 

Given that an event result was observed (composite event M), the probability that a two 
was rolled is 1/3. Now if all the Aj are independent (simple) events and M is a composite 
event, then we can write an opposing rule: 

p(M) =  p(M |A1)p(A1) +  · · · + p(M |An)p(An). 

This relation collects conditional probabilities of M given each separate event Ai. Its logic 
is easily seen in a graph. Here is an example of how to use it in a practical problem. Box 
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A has 2000 items in it of which 5% are defective; box B has 500 items with 40% defective; 
boxes C and D each contain 1000 items with 10% defective. If a box is picked at random, 
and one item is taken from that box, what is the probability that it is defective? M is the 
composite event of a defective item, so we are after p(M). We apply the formula above to 
find 

p(M) = 0.05 × 0.25 + 0.40 × 0.25 + 0.10 × 0.25 + 0.10 × 0.25 = 0.1625. 

3.3 Bayes’ Rule 

Consider a composite event M and a simple event Ai. We have from conditional probability 
above 

p(Ai ∩ M) 
p(Ai|M) =  

p(M) 
p(Ai ∩ M) 

p(M |Ai) =  
p(Ai) 

, 

and if we eliminate the denominator on the right-hand side, we find that 

p(M |Ai) =  
p(Ai|M)p(M) 

p(Ai) 
p(M |Ai)p(Ai) 

p(Ai|M) =  
p(M) 

. 

The second of these is most interesting - it gives the probability of a simple event, conditioned 
on the composite event, in terms of the composite event conditioned on the simple one! 
Recalling our above formula for p(M), we thus derive Bayes’ rule: 

p(Ai|M) =  
p(M |Ai)p(Ai) 

. 
p(M |A1)p(A1) +  · · · + p(M |An)p(An) 

Here is an example of its use. Consider a medical test that is 99% accurate - it gives a 
negative result for people who do not have the disease 99% of the time, and it gives a 
positive result for people who do have the disease 99% of the time. Only one percent of the 
population has this disease. Joe just got a positive test result: What is the probability that 
he has the disease? The composite event M is that he has the disease, and the simple events 
are that he tested positive (+) or he tested negative (−). We apply 

p(M |+) = 
p(+|M)p(M) 

p(+) 
p(+|M)p(M) 

= 
p(+|M)p(M) +  p(+|M̄)p(M̄) 

0.99 × 0.01 
= 

0.99 × 0.01 + 0.01 × 0.99 
= 1/2. 
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This example is not well appreciated by many healthcare consumers! 

Here is another example, without so many symmetries. Box A has nine red pillows in it and 
one white. Box B has six red pillows in it and nine white. Selecting a box at random and 
pulling out a pillow at random gives the result of a red pillow. What is the probability that 
it came from Box A? M is the composite event that it came from Box A; the simple event 
is that a red pillow was collected (R). We have 

p(M |R) =  
p(R|M )p(M) 

p(R) 
p(R|M)p(M ) 

= 
p(R|M )p(M) +  p(R|M̄)p(M̄) 

0.9 × 0.5 
= 

0.9 × 0.5 + 0.4 × 0.5 
= 0.692. 

3.4 Random Variables 

Now we assign to each event Ai in the sample space a given value: each Ai corresponds with 
an xi. For instance, a coin toss resulting in heads could be equated with a $1 reward, and 
each tails could trigger a $1 loss. Dollar figures could be assigned to each of the faces of a 
die. Hence we see that if each event Ai has a probability, then so will the numerical values 
xi. 

The average value of xi can be approximated of course by sampling the space N times, 
summing all the x’s, and dividing by N . As  N becomes bigger, this computation will give 
an increasingly accurate result. In terms of probabilities the formula for the expected value 
is 

n 

x̄ = E(x) =  p(Ai)xi. 
i=1 

The equivalence of this expected value with the numerical average is seen as follows: if the 
space is sampled N times, and the number of results [Ai, xi] is  ki, then p(Ai) � ki/N . 

Superposition is an important property of the expectation operator: 

E(x + y) =  E(x) +  E(y). 

The mean of a function of x is defined using probabilities of the random variable x: 
n 

E [f (x(ξ))] = f(xi)pi. 
i=1 

Another important property of a random variable is the variance - a measure of how much 
the x varies from its own mean: 

σ2 = E (x − x̄)2 
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= E(x 2) − x̄2 . 

The second line is apparent because E(−2xx̄) =  −2x̄2 . Note we use the symbol σ2 for 
variance; the standard deviation σ is just the square root, and has the same units as does 
the random variable x. 

3.5	 Continuous Random Variables and the Probability Density 
Function 

Let us suppose now the random event has infinitely many outcomes: for example, the random 
variable x occurs anywhere in the range of [0, 1]. Clearly the probability of hitting any specific 
point is zero (although not impossible). We proceed this way: 

p(x is in the range[xo, xo + dx]) = p(xo)dx, 

where p(xo) is called the probability density function. Because all the probabilities that 
comprise it have to add up to one, we have � ∞ 

p(x)dx = 1. 
−∞ 

With this definition, we can calculate the mean of the variable x and of a function of the 
variable f(x): 

� ∞ 
E [x] =  xp(x)dx, 

−∞ � ∞ 
E [f(x)] = f(x)p(x)dx. 

−∞ 

Here are a few examples. Consider a random variable that is equally likely to occur at any 
value between zero and 2π. Considering the area under p has to be one, we know then that 
p(x) = 1/2π for x = [0, 2π] and it is zero everywhere else. 

E(x) =  π 

σ2(x) =  π2/3√ 
σ(x) =  π/ 3 � 2π 1 

E(cos x) =  
0 2π 

cos x dx  = 0  

E(cos2 x) =  
1 
2 
. 
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The earlier concept of conditional probability carries over to random variables. For instance, 
considering this same example we can write � 2π 

E [x|x > π] =  xp(x|x > π) dx 
0 � 2π p(x) 3π 

= x dx = . 
π p(x > π) 2 

The denominator in the integral inflates the original pdf by a factor of two, and the limits 
of integration cause only values of x in the range of interest to be used. 

3.6 The Gaussian PDF 

The normal or Gaussian pdf is one of the most popular distributions for describing random 
variables, partly because many physical systems do exhibit Gaussian variability, and partly 
because the Gaussian pdf is amenable to some very powerful tools in design and analysis. It 
is 

p(x) =  √ 
1 

e(x−x̄)2/2σ2 
, 

σ 2π 

where σ and σ2 are the standard deviation and variance, respectively, and x̄ is the mean 
value. By design, this pdf always has area one. The cumulative probability function is 

1 x − x̄
P (x) =  + erf , where 

2 σ 

erf(ξ) =  √ 
1 ξ 

e −ξ2/2dξ. 
2π 0 

Don’t try to compute the error function erf(); look it up in a table or call a subroutine! The 
Guassian distribution has a shorthand: N(x̄, σ2). The arguments are the mean and variance. 

3.7 The Cumulative Probability Function 

The cumulative probability function is closely related to the pdf p(x): 
xo 

P (xo) =  p(x ≤ xo) =  p(x)dx, so that 
−∞ 

dP (xo) 
p(xo) =  . 

dx 
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The probability density function is the derivative of the cumulative probability function. P 
is important because it lets us now transform the complete pdf of a random variable into 
the pdf of a function of the random variable. Let us say y = f(x); the key idea is that 
for a monotonic function f(x) (monotonic means the function is either strictly increasing or 
strictly decreasing with x), 

p(x ≤ xo) =  p(y ≤ yo = f(xo)); 

these probabilities are the same, although we will see some subtleties to do with multiple 
values if the function is not monotonic. Here is a first example: let y = ax + b. In the case 
that a >  0, then 

yo − b 
ax + b ≤ yo when x ≤ −→ 

a � yo−b 
a 

p(y ≤ yo) =  p(x) dx. 
−∞ 

The case when a <  0 has simply 
� yo−b 

a 
p(y ≤ yo) = 1  − p(x) dx. 

−∞ 

All that we have done here is modify the upper limit of integration, to take the function into 
account. Now suppose that y < yo or y > yo over several disjoint regions of x. This will be 
the case if f(x) is not monotonic. An example is y = x2, which for a given value of yo clearly 
has two corresponding xo’s. We have 

√ √ 
p(y ≥ yo) =  p(x ≤ −  yo) +  p(x ≥ yo), or equivalently √ √ 
p(y ≤ yo) = 1  − p(x ≤ −  yo) − p(x ≥ yo) 

and there is of course no solution if yo < 0. The use of pdf’s for making these calculations, 
first in the case of monotonic f(x), goes like this: 

p(y)|dy| = p(x)|dx|, so that � dy 
p(y) =  p(x)/ � � . � dx � 

In the case of non-monotonic f(x), a given value of y corresponds with x1, · · · , xn. The 
correct extension of the above is 

� dy(x1) � � dy(xn) � p(y) =  p(x1)/ � � + · · · + p(xn)/ � � . � dx � � dx � 
Here is a more detailed example. Consider the Gaussian or normal distribution N(0, σ2): 

p(x) =  √ 
1 

e −x2/2σ2 
, 

σ 2π 
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and let y = ax2 . For a given (positive) y, there are two solutions for x: 

22 

y y 
x1 = − , x2 = . 

a a 

p(x) y=ax2 p(y) 

x x y 

Now dy/dx = 2ax so that 

� dy(x1) � � dy(x2) � � 
y √ � � = � � = 2a| x| = 2a = 2  ay −→ � dx � � dx � a


� dy(x1) � � dy(x2) � 
p(y) =  p(x1)/ � � + p(x2)/ � � � dx1 � � dx2 � 

= √ 
1 √ 

1 
e −y/2aσ2 

+ same , giving finally 
σ 2π 2 ay 

= √ 
1 

e −y/2σ2a . 
σ 2πay 

3.8 Central Limit Theorem 

A rather amazing property of random variables is captured in the central limit theorem; 
that a sum of random variables taken from distributions - even many different distributions 
- approaches a single Gaussian distribution as the number of samples gets large. To make 
this clear, let x1 come from a distribution with mean x̄1 and variance σ1

2, and so on up to 
xn, where n is the number of samples. Let y = i

n 
=1 xi. As  n → ∞  , 

p(y) =  N(ȳ, σy
2), with 

n 

ȳ = x̄i, 
i=1 
n 

=σy 
2 σi 

2 . 
i=1 

This is easy to verify numerically, and is at the heart of Monte Carlo simulation techniques. 
As a practical matter in using the theorem, it is important to remember that as the number 
of trials goes to infinity so will the variance, even if the mean does not (for example, if the 
underlying means are all zero). Taking more samples does not mean that the variance of the 
sum decreases, or even approaches any particular value. 
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