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44	 Feedback on a Highly Maneuverable Vessel 

The directional behavior of a highly maneuverable vessel is modeled by 

θ 0.1s + 1  
= 

δ s2 + 0.6s − 0.05 

where the rudder deflection is δ and the heading is θ. You note that because the transfer 
function denominator has a negative coefficient, the system is unstable without a control sys­
tem. Also, the numerator shows that the hydrodynamic lift on the rudder has a component 
that scales rudder position as well as one that scales rudder rotation rate. 

1. Find the	 poles (the roots of the denominator polynomial) of this system. Are the 
roots complex (indicating an oscillatory behavior), or real (indicating two exponential 
growth/decay modes)? At what rate does the system go unstable - that is, over what 
time does the response grow by a factor of e? (You can confirm this with a simulation 
of the system behavior from some nonzero initial condition.) 

The poles are given by the roots of the denominator polynomial equation in s, i.e., the 
roots of s2 + 0.6s − 0.05 = 0. These are -0.674 and 0.074, both real. The negative one 
pertains to a stable mode whereas the positive one indicates an unstable mode. The 
time scale (or time constant) of the unstable mode is 1/0.074 or about 13.5 seconds. 
This is the amount of time it takes for the output to increase by a factor of e = 2.718. 
It is confirmed in an impulse response, for example, after the transient response of the 
first, stable mode has died away. 

2. Design a proportional-derivative controller for the boat (PD), so as to achieve a closed-
loop bandwidth of ωc = 1 rad/s and a damping ratio of ζ = 0.5.  The idea here is  to  
choose kp and kd so as to put the closed-loop poles - that is, the roots of 1+P (s)C(s) = 0  √ 
- at the specific locations ωcζ ± jωc 1 − ζ2 . The easiest way to carry this out is to 
write out the polynomial with kd and kp as free variables, and recognize that this same 
polynomial can be written as s2 + 2ζωcs + ωc 

2 = 0. Some algebra will give you a set of 
two equations in two unknowns. 

The poles of the closed-loop system are to be the same as those of s2 +2ζωcs+ ωc 
2 = 0; 

the closed-loop poles satisfy 1+P (s)C(s) = 0, where  P (s) is the transfer function of the 
plant, and C(s) is that of the controller. If P (s) =  np(s)/dp(s) and C(s) =  nc(s)/dc(s) 
(numerators and denominators), then the condition 1 +  P (s)C(s) = 0  is the same as 
dP (s)dC (s) +  nP (s)nC (s) = 0. Working this out, we obtain: 

0 = 	s 2 + 0.6s − 0.05 + (kp + kds)(0.1s + 1)  → 
0.6 + 0.1kp + kd

2ζωc	 = and 
1 + 0.1kd 

ω2 = 
kp − 0.05 

.c 1 + 0.1kd 



44 FEEDBACK ON A HIGHLY MANEUVERABLE VESSEL 186

Setting ωc and ζ to the desired values and solving this for the unknown variables we
get kp = 1.082 and kd = 0.324.

3. Simulate the plant and controller, combined as a negative feedback system, in a step
response, and show a plot. Note the step is applied to the commanded position; so
you have to combine the plant and the controller, using δ = (kp + skd)(θcommand − θ).
Approximate the step function input as a ramp that rises over 0.02 seconds or longer
(this will avoid artifacts of MATLAB’s adaptive step-size algorithm). Does the response
have the time scale and damping properties that you designed for?
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The step response can be computed using calls to the MATLAB Control System Tool-
box, but it is instructive to perform the calculations as a continuous-time simulation.
After all, what is MATLAB doing?

The closed-loop dynamics are given as

(s2 + 0.6s− 0.05)θ(s) = (0( .1s + 1) δ

d¨ ˙θ + 0.6θ − 0.05θ = 0.1 + 1 kd
dt

+ kp (r
dt

− θ),

where r is the reference heading. Collecting terms, we find

¨ ˙(1 + 0.1kd)θ + (0.6 + 0.1kp + kd)θ + (kp − 0.05)θ = 0.1kdr̈ + (0.1kp + kd)ṙ + kpr.

The left-hand side looks like a regular mass-spring-damper, which will certainly have
positive coefficients if the gains have been picked correctly. The right-hand side is
more interesting because it involves the first and second derivatives of the commanded
heading; for a step input in r, both of these derivatives are infinite! If r is a unit step,
then ṙ is a unit impulse, and r̈ is a (scaled) positive, then negative impulse.

d
) ( )
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A control action generated in the case of a step input would be impulsive here, and
this is generally to be avoided in practice - unless some saturation occurs elsewhere in
the system, or you know that the actuator can handle this kind of input. One solution
is to never make r a step function, or even a ramp, so that e = r − θ always has two
finite derivatives. A curve that is quadratic in time, for example, would suffice; so
would the output of a separate second-order stable system, without any differentiation
of the input (i.e., no factors of s in its transfer function numerator).

After all this, we still have to simulate the system one way or another. We extend a trick
used in a prior question - the construction of an approximate impulse, of duration ε,
and area one. This will be ṙ; its derivative will be r̈, and its integral will be r. Consider
a very tall symmetric triangle with a peak at time ε/2, and height 2/ε. The area under
it is clearly one, and its derivative is ±4/ε2. With this technique, the plot shows that
the step response computed via simulation matches that created by the Control System
Toolbox.

Getting back to√ the question now, we expect a damped natural frequency in the closed
loop of ωd = 1− 0.52 = 0.866, or a damped period of about 7.25 seconds. This is
what we see in the figure. The damping ratio of 0.5 corresponds with an overshoot of
around fifteen percent, and this is also confirmed by the step response, when the final
value - which is not one - is taken into account.

4. After the transients of the step response have died out, what is the steady-state error?

The final value can be computed by setting s = 0 in the closed-loop transfer function;
this captures the effects at zero frequency, i.e., the steady-state after transients have
died out. We have

kp
final value = = 1.048.−0.05 + kp

Clearly when kp is large, this final value will be closer to one, as desired. As you know,
however, gains cannot be turned up indiscriminately because the closed loop natural
frequency will follow.

%--------------------------------------------------------------

% Feedback Control for Maneuvering

clear all;

global xepsilon kp kd n1 n0 d2 d1 d0;

% epsilon for computing step function; if we make this really small, the

% integrator will be forced to take tiny steps at the beginning; this

% conflicts with the defaults in MATLAB’s adaptive stepsize routine.
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xepsilon = .02 ; 

% P numerator and denominator coefficients

n1 = .1 ;

n0 = 1 ;

d2 = 1 ;

d1 = .6 ;

d0 = -.05 ;


disp(sprintf(’Open-loop poles: %g %g’,roots([d2 d1 d0])));


% find the two gains for the specified crossover frequency and damping

% ratio

wc = 1 ;

z =  .5  ; 


mat = [2*z*wc*n1-n0 , -n1 ; wc^2*n1 , -n0] ;

vec = [d1 - 2*z*wc*d2 ; d0 - d2*wc^2] ;

vec = inv(mat)*vec ;

kd = vec(1) ;

kp = vec(2) ;

disp(sprintf(’The gains needed are [kp kd] = [%g %g].’, kp,kd));


% A. here’s the analysis using control system toolbox calls


% construct the plant and look at the unstable impulse response

sysP = tf([0 n1 n0],[d2 d1 d0]);

figure(1);clf;hold off;

impulse(sysP);


% close the loop and look at step response

sysC = tf([kd kp],[0 1]);

sysPC = sysC*sysP ;

sysCL = feedback(sysPC,1);

[y1,t1] = step(sysCL);


% B. here’s the simulation using regular integration


[t,y] = ode45(’maneuveringFeedback_dxdt’,[0 12],[0 0]) ;


figure(2);clf;hold off;

subplot(’Position’,[.2 .2 .6 .3]);

plot(t,y(:,2),t1,y1,’--’,’LineWidth’,2);


grid;


title(’Closed-loop Step Response’);
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xlabel(’seconds’);


legend(’direct simulation’,’Controls toolbox’,4);


%-------------------------------------------------------------­


%--------------------------------------------------------------------­


function [xdot] = maneuveringFeedback_dxdt(t,x) ;


global xepsilon kp kd n1 n0 d2 d1 d0 ;


% construct the artificial step input, with its two derivatives

if t < xepsilon/2, 

rddot = 4/xepsilon^2 ; 
rdot = 4/xepsilon^2*t ; 
r = 2/xepsilon^2*t^2 ; 

elseif t < xepsilon, 
rddot = -4/xepsilon^2 ; 
rdot = 2/xepsilon - 4/xepsilon^2*(t-xepsilon/2) ; 
r = 0.5 + + 2/xepsilon*(t-xepsilon/2) - ... 

2/xepsilon^2*(t-xepsilon/2)^2; 
else, 

r = 1 ;  
rdot = 0 ; 
rddot = 0 ; 

end; 

% (an option to the above is just to ignore the derivatives in the 
% numerator! For this, one would use r = 1, rdot = 0, rddot = 0 in 
% the line below. ) 

% compute the derivatives 
xdot(1,1) = -(d1 + n1*kp + n0*kd)*x(1,1) - (n0*kp+d0)*x(2,1) + ... 

n1*kd*rddot + (n1*kp + n0*kd)*rdot + n0*kp*r ; 
xdot(1,1) = xdot(1,1)/(d2 + n1*kd) ; 

xdot(2,1) = x(1,1) ; 

%-------------------------------------------------------------------­
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