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35 Landing Vehicle Control 

A controlled vehicle that is landing onto a target in the horizontal plane is equipped with 
a vision-based navigation system. The system gives very good resolution at low altitudes, 
but, unfortunately, poor resolution at high altitudes. This effect is modeled as σν 

2 = 0.05z2 , 
where z is the altitude and σν 

2 is the variance of the noise ν in the measurement y = x + ν; 
x is the true horizontal position of the craft. The sensor noise ν is considered to be of zero 
mean, and to have Gaussian distribution, at any particular altitude. There are no other 
effects, say due to roll, pitch, or yaw, in this sensor. 

We consider the horizontal positioning problem in one direction only, e.g., North-South. The 
vehicle gets a measurement y once per second, and descends at a steady rate of 2m/s. A  
controller applies a corrective thrust force according to T = −k × sign(y), and the vehicle 
physically responds to thrust with a velocity change: ẍ = T . The vehicle physical behavior 
is also affected by a horizontal drift disturbance (due to current or winds). This is steady 
in time and constant over all altitudes, but its magnitude on any particular deployment can 
take a random value between -0.2 m/s and 0.2 m/s, uniformly distributed. 

1. Is the sensor noise process either stationary or ergodic? Explain. 

Summary: The sensor noise is not stationary, because its statistics (variance in par­
ticular) are not constant through time. The sensor noise is worst at high altitudes 
and best at low altitudes. Ergodicity implies that the time statistics and the ensemble 
statistics are the same - in this case, clearly the ensemble variance at any given time 
cannot equal  the variance over  time of any  particular realization. Hence the noise 
process is not ergodic either. 

2. For an initial height of	 z = 200m, no initial error or horizontal velocity (i.e., x(t = 
0) = ẋ(t = 0) = 0), and gain k = 0.1 what is the mean position error upon landing? 

Solution: The mean error is zero, as should be expected since everything is symmetric 
on the positive and negative x-axes. This is confirmed in Monte Carlo simulations; see 
the attached histogram with gain 0.1, and 10,000 trials. 

3. Under these conditions, what is the	 standard deviation of the position error upon 
landing? 

Solution: On three ”experiments” with 10,000 trials, I get [10.5, 10.7, 10.4]m as the 
answer - a good average is 10.5m. 

The time traces below give the sensor noise (top subplot), the vehicle x-position (middle 
subplot), and the vehicle x-velocity (bottom subplot). We see that the vehicle spends 
a lot of effort responding to the very large sensor noise at altitude and does not really 
”home in” on the target effectively. 

4. Can you pick another k that gives better performance? 

Solution: The last plot gives the error standard deviation for some additional values 
of the gain. We see that a gain of 0.027 is quite good, with a standard deviation of 
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about 3.85m. Note that because the vehicle has zero initial error, it is the drift that 
creates the initial perturbation. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Falling Vehicle navigation & control simulation 

clear all; 
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n = 100 ; % number of time steps 
dt = 1 ; % time step 
zdot = 2 ; % falling velocity 
zInitial = 200 ; % initial elevation 
N = 10000 ; % number of trials 
gain = input(’What is the gain? ’); 

figure(1);clf;hold off; 
for i = 1:N, % do many trials 

x(1) = 0 ; % set initial conditions

xdot(1) = 0 ;


wind = (rand-.5)*2*.2 ; % get the steady wind for this trial 

for j = 0:n-1, % time index 

z = zInitial - zdot*j*dt ; % altitude at each time instant


y(j+1) = x(j+1) + sqrt(.05)*z*randn ; % measurement


% propagate the vehicle state

xdot(j+2) = xdot(j+1) - gain*sign(y(j+1))*dt ;

x(j+2) = x(j+1) + (xdot(j+1)+xdot(j+2))/2*dt + wind*dt ;


end; 

if N <= 100, % make a few plots if a small # of trials

subplot(311); plot([0:n-1],y); hold on;

ylabel(’measurement’);

subplot(312); plot([0:n]*dt,x); hold on ;

ylabel(’position’);

subplot(313); plot([0:n]*dt,xdot); hold on;

ylabel(’velocity’);

xlabel(’time’);


end; 

finalError(i) = x(end) ; % store the final error 
end; 

figure(2);clf;hold off; 
hist(finalError,50); 
title(’Histogram - # of events’); 
xlabel(’Final Error’); 
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disp(sprintf(’gain: %g.’, gain)) ;

disp(sprintf(’Mean error: %g m.’, mean(finalError)));

disp(sprintf(’Error stddev: %g m.’, std(finalError)));


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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