
34 DEAD-RECKONING ERROR 124

34 Dead-Reckoning Error

An unmanned, untethered underwater vehicle operating near large metallic marine structures
has to navigate without a magnetic compass, and in some cases without any acoustic ranging
available. In these cases, a viable approach is dead-reckoning based on the yaw gyro and
on the body-referenced velocity over ground, from a Doppler acoustic sensor. Specifically, if
θ is yaw angle, U is forward speed, and [x, y] is the position in a global frame of reference,
dead-reckoning entails propagating

ẋ = U cos θ

ẏ = U sin θ.

Let us consider a yaw rate gyro with a noise variance of 0.0025rad2/s2; it is Gaussian noise.
The speed sensor is also subject to Gaussian noise, but this has variance 0.0001m2/s2. The
yaw rate sensor is measuring r = θ̇ and the speed sensor is measuring U .

The platform on which these sensors is mounted goes through a known circular trajectory,
with U = 1.5m/s and r = π/150 rad/s, and the sensors are sampled five times per second.

Question: Assuming that at time zero, there is no error in x, y, θ, what are the mean and √
standard deviation of the x, y, and range (x2 + y2) errors at the end of one complete circle?
Please also confirm that your errors are small with zero sensor noise - this should easily be
several meters or less, even if you use a basic forward Euler integration rule.

As indicated in the attached code, this is a Monte Carlo problem, where we inject a random
number to go with with every noisy measurement. The figure below shows twenty realiza­
tions, and the scatter in the endpoints. You see that the paths get progressively worse as we
move around the circle and more erroneous measurements are used in the integrations.

For 10,000 realizations, statistics computed are:

x-error: -0.03 m mean 6.81 m standard deviation
y-error: 0.15 m mean 3.88 m standard deviation
range error: 6.81 m mean 3.89 m standard deviation.

The mean x and y errors should be close to zero, but there are not enough realizations to
show this clearly.

%%
% Dead reckoning.

% FSH MIT Mechanical Engineering April 2008

clear all;
clc;

34 DEAD-RECKONING ERROR 125

20 trials with noisy measurements

−80 −60 −40 −20 0 20 40 60 80

0

20

40

60

80

100

120

140

y,
 m

x, m

dt = 0.2 ; % time step, s
U = 1.5 ; % speed, m/s
r = 2*pi/300 ; % yaw rate, rad/s
Uvar = 0.0025 ; % speed sensor variance, (m/s)^2
Rvar = 0.0001 ; % yaw rate variance (rad/s)^2
N = 20 ; % number of trials (a small number if showing plots,

plotFlag =
% or
1 ; %

a big number if you want
set to one to show plots

good statistics)

T = 2*pi/r ; % time to complete an entire circle

figure(1);clf;hold off;
figure(2);clf;hold off;

tic ;
for ii = 1:N, % loop through the number of realizations

% initialize the various states - first time step

34 DEAD-RECKONING ERROR 126

x(1) = 0 ; % x-position

y(1) = 0 ; % y-position

th(1) = 0 ; % heading

xp(1) = 0 ; % "pure" x-position : created without sensor noise

yp(1) = 0 ; % "pure" y-position

thp(1) = 0 ; % "pure" heading

rMeasure(1) = sqrt(Rvar)*randn + r ; % first measurement of r

UMeasure(1) = sqrt(Uvar)*randn + U ; % first measurement of U

ct = 1 ;
for tt = dt:dt:T, % step through all the times needed to complete

% a circle

ct = ct + 1 ;

UMeasure(ct) = sqrt(Uvar)*randn + U ; % get measurements
rMeasure(ct) = sqrt(Rvar)*randn + r ;

% propagate the states based on the noisy measurements
% (using a one-shot modified Euler step)

% th(ct) = th(ct-1) + dt*rMeasure(ct)/2 + dt*rMeasure(ct-1)/2 ;

% x(ct) = x(ct-1) + dt*UMeasure(ct)*cos(th(ct))/2 + ...
% dt*UMeasure(ct-1)*cos(th(ct-1))/2;

% y(ct) = y(ct-1) + dt*UMeasure(ct)*sin(th(ct))/2 + ...
% dt*UMeasure(ct-1)*sin(th(ct-1))/2;

% a regular forward Euler - testing testing!!!*******

% this is what most of the students did S08

th(ct) = th(ct-1) + dt*rMeasure(ct-1) ;

x(ct) = x(ct-1) + ...

dt*UMeasure(ct-1)*cos(th(ct-1));

y(ct) = y(ct-1) + ...

dt*UMeasure(ct-1)*sin(th(ct-1));

% for the first realization, compute also a "pure"

% trajectory, i.e., without sensor noise - this will

% confirm that our integration method is OK.

if ii == 1,

thp(ct) = thp(ct-1) + dt*r ;

34 DEAD-RECKONING ERROR 127

xp(ct) = xp(ct-1) + dt*U*cos(thp(ct))/2 + ...
dt*U*cos(thp(ct-1))/2;

yp(ct) = yp(ct-1) + dt*U*sin(thp(ct))/2 + ...
dt*U*sin(thp(ct-1))/2;

end;

end;

tvec = 0:dt:dt*(length(x)-1) ;

% collect the errors for each realization

xerr(ii) = x(end);

yerr(ii) = y(end);

rerr(ii) = sqrt(x(end)^2 + y(end)^2);

% here are the errors with the "pure" trajectory

xperr = xp(end);

yperr = yp(end) ;

rperr = sqrt(xperr(end)^2 + yperr(end)^2);

if plotFlag,

figure(1);hold on;

plot(tvec,x,tvec,y,tvec,th*20) ;

legend(’x, m’,’y, m’,’\theta*20, rad/s’,3);

xlabel(’sec’);

figure(2);hold on;

plot(x,y,’--’,x(end),y(end),’k.’);

plot(xp,yp,’r’,’LineWidth’,2);

axis(’equal’);

grid on;

xlabel(’x, m’);

ylabel(’y, m’);

title(sprintf(’%d trials with noisy measurements’,N));

disp(sprintf(’ii: %d Range Error: %g m.’, ii, rerr(ii)));

end;

end;

disp(sprintf(’Elapsed time: %g sec.’, toc));

34 DEAD-RECKONING ERROR 128

disp(sprintf(’[xerr yerr rangeErr] with NO NOISE: %g %g %g m.’,...
xperr,yperr,rperr));

disp(sprintf(’Trials: %d’, length(xerr)));
disp(sprintf(’Mean of [xerr yerr rangeErr]: %g %g %g m.’,mean(xerr),...

mean(yerr), mean(rerr)));
disp(sprintf(’Stddev of [xerr yerr rangeErr]: %g %g %g m.’,std(xerr),...

std(yerr), std(rerr)));

%%

MIT OpenCourseWare
http://ocw.mit.edu

2.017J Design of Electromechanical Robotic Systems
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

