
30 DYNAMIC PROGRAMMING FOR PATH DESIGN 109 

30 Dynamic Programming for Path Design 

Given the transition costs in red, what are the maximum and minimum costs to get from 
node 1 to node 11? This situation is encountered when planning paths for autonomous 
agents moving through a complex environment, e.g., a wheeled robot in a building. 

2 9

11

2 
5 4

3

4

3 4 8 

8
3 5 4


1 4

7


5 8 

4 6 
5 4 

5 7 

3 4 10 
4 

5 
4 7 

Solution: The minimum cost is 16 (path [1,6,9,11] or [1,2,8,9,11]) and the maximum value 
is 28 (path [1,4,5,6,7,9,11]!). The attached code uses value iteration to find these in two and 
five iterations, respectively. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Value iteration solution of deterministic dynamic programming. 
% The program looks complicated only because I cover both 
% minimization and maximization in the same program! 

clear all; 

ch = input(’Find minimum (0) or maximum (1): ’); 
if ~ch, 

init = 1e6 ; % look for minimum; 
% big initial guesses for costs to go 

else, 
init = 1e-6 ; % look for maximum; 

% small initial guesses for value to go 
end; 

% interconnect matrix: row is the node (first is starting 



30 DYNAMIC PROGRAMMING FOR PATH DESIGN 110 

% point) and column is the set of nodes pointed to. Note 
% that the ending node is not included because it points to 
% nowhere. 
I = [[2 6 4] % node 1 (start) points to nodes 2,6,4 

[3 8 5] % node 2 points to nodes 3,8,5. And so on...

[8 6 NaN] % node 3

[5 7 NaN] % node 4

[6 7 10] % node 5

[8 9 7] % node 6

[10 9 NaN] % node 7

[10 9 NaN] % node 8

[11 NaN NaN] % node 9

[11 NaN NaN]]; % node 10


% cost per link - these go with the interconnects in A. Note 
% that the entries with direct connection to the end node are NaN, 
% because we will enforce the link cost in ctg (below) explicitly 
C = [[3 7 5] % The cost is 3 to move between nodes 1 and 2, 

% and 7 to move between nodes 1 and 6, etc. 
[2 5 4] % node 2

[4 5 NaN] % node 3

[3 5 NaN] % node 4

[4 4 7] % node 5 
[4 5 4] % node 6

[4 8 NaN] % node 7

[8 4 NaN] % node 8

[NaN NaN NaN] % node 9

[NaN NaN NaN]]; % node 10


% initial guess of cost-to-go (or value-to-go) at each node 
tg = [[NaN] % node 1 

[init] % node 2 
[init] % node 3 
[init] % node 4 
[init] % node 5 
[init] % node 6 
[init] % node 7 
[init] % node 8 
[4] % node 9 (points directly to end, node 11)

[3]]; % node 10 (points directly to end, node 11)


w = size(I,2); % width of interconnect matrix 

disp(sprintf(’%g ’,tg)); % list the first cost-to-go or 



30 DYNAMIC PROGRAMMING FOR PATH DESIGN 111 

% value-to-go 

for k = 1:5, % carry out a fixed number of iterations 

% cycle through the nodes one by one. Note that we don’t

% need to recompute tg for nodes that point to the end

for i = 1:sum(~isnan(C(:,1))),


% We’ll look for the minimum estimated cost-to-go

% (or maximum estimated value-to-go) across

% the possible nodes pointed to

if ~ch,


dummy = 1e6 ; % initialize to be huge

else,


dummy = 1e-6 ; % initialize to be tiny

end;


% look at all the nodes pointed to from node i 
for j = 1:w, 

if ~isnan(I(i,j)), % consider only true entries in I 

test = tg(I(i,j)) + C(i,j) ; 

if ~ch, % look for minimum 
if test < dummy, 

dummy = test ; 
end; 

else, % look for maximum 
if test > dummy, 

dummy = test ; 
end; 

end; 

end; % "true entries"

end; % j: nodes pointed to

tg(i) = dummy ;


end; % i: nodes 
disp(sprintf(’%g ’,tg)); 

end; % k: iteration 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



MIT OpenCourseWare
http://ocw.mit.edu 

2.017J Design of Electromechanical Robotic Systems 
Fall 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



