30 DYNAMIC PROGRAMMING FOR PATH DESIGN 109
30 Dynamic Programming for Path Design

Given the transition costs in red, what are the maximum and minimum costs to get from
node 1 to node 117 This situation is encountered when planning paths for autonomous
agents moving through a complex environment, e.g., a wheeled robot in a building.

Solution: The minimum cost is 16 (path [1,6,9,11] or [1,2,8,9,11]) and the maximum value
is 28 (path [1,4,5,6,7,9,11]!). The attached code uses value iteration to find these in two and
five iterations, respectively.

Yoo o o o o oo o o o oo o ToTo o o o o o o o ToTo o To o o o ToTo oo o o o o ToTo oo Jo o o ToTo oo o o oo To oo o o o o o o
% Value iteration solution of deterministic dynamic programming.
% The program looks complicated only because I cover both

% minimization and maximization in the same program!

clear all;
ch = input(’Find minimum (0) or maximum (1): ’);
if “ch,
init = 1le6 ; % look for minimum;
% big initial guesses for costs to go
else,
init = le-6 ; % look for maximum;
% small initial guesses for value to go
end;

% interconnect matrix: row is the node (first is starting



30 DYNAMIC PROGRAMMING FOR PATH DESIGN 110

b
b
b

b
b
b

Q

point) and column is the set of nodes pointed to. Note
that the ending node is not included because it points to

nowhere.

= [[2 6 4]
[3 8 5]
[8 6 NaN]
[5 7 NaN]
(6 7 10]
[8 9 7]
[10 9 NaN]
[10 9 NaN]
[11 NaN NaN]
[11 NaN NaN]

%
%
%
%
%
%
%
%
%
1; %

node
node
node
node
node
node
node
node
node
node

1 (start) points to nodes 2,6,4
2 points to nodes 3,8,5. And so on...

© 00 ~NO O b W

10

cost per link - these go with the interconnects in A. Note
that the entries with direct connection to the end node are NaN,
because we will enforce the link cost in ctg (below) explicitly
The cost is 3 to move between nodes 1 and 2,
and 7 to move between nodes 1 and 6, etc.

= [[3 7 5]
[2 5 4]
[4 5 NaN]
[3 5 NaN]
[4 4 7]
[4 5 4]
[4 8 NaN]
[8 4 NaN]

)
hh
b
b
b
b
b
b
b

[NaN NaN NaN] A
[NaN NaN NaNl]1; %

node
node
node
node
node
node
node
node
node

2
3
4
5
6
7
8
9
10

% initial guess of cost-to-go (or value-to-go) at each node

tg

U

= [[NaN]
[init]
[init]
[init]
[init]
[init]
[init]
[init]
(4]
[31]1;

= size(I,2);

b
b
b
b
b
b
b
b
h
h

node
node
node
node
node
node
node
node
node
node

1

2

3

4

5

6

7

8

9 (points directly to end, node 11)
10 (points directly to end, node 11)

% width of interconnect matrix

disp(sprintf(’%g ’,tg));

% list the first cost-to-go or



30 DYNAMIC PROGRAMMING FOR PATH DESIGN 111

% value-to-go
for k = 1:5, 7, carry out a fixed number of iterations

% cycle through the nodes one by one. Note that we don’t
% need to recompute tg for nodes that point to the end
for i = 1:sum("isnan(C(:,1))),

% We’ll look for the minimum estimated cost-to-go
% (or maximum estimated value-to-go) across
% the possible nodes pointed to

if “ch,

dummy = le6 ; % initialize to be huge
else,

dummy = le-6 ; % initialize to be tiny
end;

% look at all the nodes pointed to from node i
for j = 1:w,
if “isnan(I(i,j)), % consider only true entries in I

test = tg(I(i,j)) + C(i,]) ;

if “ch, % look for minimum
if test < dummy,
dummy = test ;
end;
else, % look for maximum
if test > dummy,
dummy = test ;
end;
end;

end; % "true entries"
end; % j: nodes pointed to
tg(i) = dummy ;
end; % i: nodes
disp(sprintf(C’%g ’,tg));
end; % k: iteration

Voo To 1o oo s ToTo o o o ToTo o o o o To o To o o ToTo o o o ToTo o o To T o o o To oo o ToTo o o o To T o o To T o o o To T o o To To o o o



MIT OpenCourseWare
http://ocw.mit.edu

2.017J Design of Electromechanical Robotic Systems
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms



