
29 FLIGHT CONTROL OF A HOVERCRAFT	 98

29 Flight Control of a Hovercraft

You are tasked with developing simple control systems for two types of hovercraft moving
in the horizontal plane. As you know, a hovercraft rests on a cushion of air, with very little
ground resistance to motion in the surge (body-referenced forward), sway (body-referenced
port), and yaw (taken positive counterclockwise viewed from above) degrees of freedom. The
simplified dynamic equations of motion are:

u̇	 = −u + Fu

v̇	 = Fv

ṙ	 = M,

where the surge and sway velocities are u and v and the control forces in the u- and v-
directions are Fu and Fv, respectively. The yaw rate is r and the control moment is M .

There are two types of craft we will consider: 1) one where Fu, Fv, and M are all commanded
independently, e.g., using independent thrusters, and 2) one where Fv = pvδFu and M =
pφδFu. This second case is encountered if there is a surge thruster (or set), whose exhaust
pushes on a rudder with (body-referenced) angle δ. To create a lateral force or moment,
you have to have some Fu and some rudder action. We will use the values pv = 0.2 and
pφ = −0.2 in this problem. Notice negative sign in pφ; it means that a positive rudder action,
counterclockwise if viewed from above, leads to a negative body torque, that is, clockwise.
This is typical when the rudder is behind the thruster, and near the back of the craft.

The dynamic equations are augmented with some kinematic relations to evolve the location
of the craft in a fixed frame:

Ẋ = u cos φ − v sin φ

Ẏ = u sin φ + v cos φ

φ̇	 = r,

where X and Y denote the location in Cartesian coordinates, and φ is the yaw angle. See
the figure below.

Create a six-state model for each vehicle type from the above equations, and perform the
following tasks:

1. By putting in different settings and combinations of Fu, Fv, M , δ, convince yourself
that for each of the two cases, the behavior is like a hovercraft. In the first case, turns
occur completely independently of translational motion in the X, Y plane, whereas for
the second, lateral force and turning torque occur together, and they scale with both
δ and Fu.

2. For Case 1:	 From a full-zero starting condition �s = [u, v, r, X, Y, φ] = [0, 0, 0, 0, 0, 0],
the objective is to move to to �sdesired = [u, v, r, X, Y, φ]desired = [0, 0, 0, 1m, 1m, πrad]

29 FLIGHT CONTROL OF A HOVERCRAFT 99

under closed-loop control. To do this, inside the derivative call for your simulation,
make three error signals:

eX = X − Xdesired

eY = Y − Ydesired

eφ = φ − φdesired.

Then position errors in the body-referenced frame are a simple rotational transforma­
tion

eu = cos φ eX − sin φ eY

ev = sin φ eX + cos φ eY .

Your control law then concludes with:

Fu = −kp,ueu − kd,uu

Fv = −kp,vev − kd,vv

M = −kp,φeφ − kd,φr,

where the kp’s and kd’s are gains proportional to the error and to the derivative of the
error, in each channel, and choosing these is your main job. Start with small positive
values and you will see your feedback system start to work! We say that this system
is fully actuated, since you can independently control all the forces and the moment.

To see why the above rules work in a basic sense, consider the yaw direction only. With
the feedback, the complete governing equation is

Jṙ = −kp,φ(φ − φdesired) − kd,φr, or,

Jφ ̈+ kd,φ φ̇ + kp,φφ = kp,φφdesired.

You see that this is a stable second-order oscillator whose parameters you get to tune,
and that the steady-state solution is φ = φdesired. For the yaw control problem, an
important practical note is: don’t let eφ get outside of the range [−π, π], or you will
be turning the long way around. A couple of if/then’s can make sure of this.

Provide a clear, marked listing of your control code (in one block please),
time plots of all six channels of �s through time, and an X, Y plot of the
vehicle trajectory in the plane. These will show that the vehicle actually
did what we wanted - to move from the origin to �sdesired.

3. Case 2: Develop a mission controller that maneuvers the vehicle from an all-zero start­
ing condition to the state [u, v, r, X, Y, φ] = [1m/s, 0m/s, 0rad/s, 20m, 20m, π/2rad].
In other words, the vehicle moves while rotating a quarter-turn, and passes through
the desired X, Y location at speed and with no yaw rate.

29 FLIGHT CONTROL OF A HOVERCRAFT 100

You can’t use the same strategy as for Case 1, because the craft can only actuate sway
and yaw together. We say that this system is under-actuated. It is not acceptable to
create by hand a sequence of control actions that achieves the move, or to create an
algorithm that uses specific times; they will never work in practice due to modeling
errors and external disturbances. What I do recommend is that you use an intermediate
waypoint on the way to the goal. This is a target X, Y that you go to first, so that the
vehicle will then line up well with the goal. Airplanes are doing this sort of maneuver
when they circle an airport in preparation for landing. Your mission procedure is
to head for the intermediate waypoint until the craft arrives within a small radius
of it (several meters, say), and then head to the goal. One well-chosen intermediate
waypoint should be enough for this problem, but you could use more if you like.

The low-level control strategy is also different from Case 1. Here, you will set Fu = 1 to
move at a steady speed of 1m/s, and then command δ so as to drive the vehicle to the
desired X, Y . How to do this? Try setting φdesired = atan2(Y − Ydesired, X − Xdesired).
Remember that positive δ gives a negative moment.

Show the same plots and listing here that you did for Case 1.

u, Fu
v, Fv

r, M

I
m, J

X

Y

Plots and code are below; these generally play out the strategy described. In Case 1, one
finds that setting the heading closed-loop behavior to be faster than that for X, Y may lead
to better performance, because there is some coupling. Case 2 is effectively a point-and-go
approach, with the critical use of an intermediate waypoint at [X, Y] = [15, −5]m to line up
the vehicle for the final approach to the goal.

29 FLIGHT CONTROL OF A HOVERCRAFT 101

u, m/s v, m/s r, rad/s
0.15 0.4 0.6

0.1 0.3 0.5

0.05 0.2 0.4

0 0.1 0.3

−0.05 0 0.2

−0.1 −0.1 0.1

−0.15 −0.2 0

−0.2 −0.3 −0.1
0 20 40 0 20 40 0 20 40

X, m Y, m φ, rad

1
 2 3.5

3
1.5

0.5 2.5

1 2

0

1.50.5

1−0.5
0

0.5

−1 −0.5 0
0 20 40 0 20 40 0 20 40

t, sec

29 FLIGHT CONTROL OF A HOVERCRAFT 102

−1

−0.5

0

0.5

1

1.5

2

Y
, m

−2 −1.5 −1 −0.5 0 0.5 1 1.5
X, m

29 FLIGHT CONTROL OF A HOVERCRAFT 103

u, m/s v, m/s r, rad/s
1.4 0.3 0.3

1.2 0.2 0.2

1 0.1 0.1

0.8 0 0

0.6 −0.1 −0.1

0.4 −0.2 −0.2

0.2 −0.3 −0.3

0 −0.4 −0.4
0 20 40 60 0 20 40 60 0 20 40 60

X, m Y, m φ, rad

25
 25 2

2020 1.5

15

15
 1

10

10 0.5
5

5 00

0 −5 −0.5
0 20 40 60 0 20 40 60 0 20 40 60

t, sec

29 FLIGHT CONTROL OF A HOVERCRAFT 104

0

5

10

15

20

Y
, m

−5 0 5 10 15 20 25

X, m

29 FLIGHT CONTROL OF A HOVERCRAFT 105

%%%

% Study dynamics and control of a hovercraft.

% FSH MIT 2.017 Oct 2009

clear all;

global captureRadius flag ; % for Case 2’s intermediate waypoint

xCase = input(’Case 1 or Case 2? ’);

captureRadius = 5 ; % used for switching waypoints in Case 2

flag = 0 ; % toggle for switching waypoints in Case 2 ;

if xCase == 1,
tfinal = 40;
[t,s] = ode45(’hoverCraftDeriv1’,tfinal,zeros(6,1));

else,
tfinal = 50 ; % for Case 2
[t,s] = ode45(’hoverCraftDeriv2’,tfinal,zeros(6,1));

end;

figure(1);clf;hold off;
for i = 1:6,

subplot(2,3,i);
plot(t,s(:,i),’LineWidth’,2);
grid;

end;

subplot(2,3,4);

xlabel(’t, sec’);

subplot(2,3,1);title(’u, m/s’); subplot(2,3,2);title(’v, m/s’);

subplot(2,3,3);title(’r, rad/s’); subplot(2,3,4);title(’X, m’);

subplot(2,3,5);title(’Y, m’); subplot(2,3,6);title(’\phi, rad’);

tr = 0:tfinal/30:tfinal ; % regularly-spaced time

sr = spline(t,s’,tr)’; % spline onto regularly-spaced time

figure(2);clf;hold off;

cphi = cos(sr(:,6)) ; sphi = sin(sr(:,6));

xbox = [1 -2/3 -2/3 1] ;

ybox = [0 1/2 -1/2 0];

center = [1 1 1 1];

plot(sr(:,4),sr(:,5),’k’,’LineWidth’,3);

hold on;

for i = 1:length(cphi),

plot(sr(i,4)*center + cphi(i)*xbox - sphi(i)*ybox, ...

29 FLIGHT CONTROL OF A HOVERCRAFT 106

sr(i,5)*center + sphi(i)*xbox + cphi(i)*ybox);
plot(sr(i,4),sr(i,5),’.k’,’MarkerSize’,20);

end;
axis(’equal’);
grid;
xlabel(’X, m’);
ylabel(’Y, m’);

%%

%%

function [sdot] = hoverCraftDeriv1(t,s);

u = s(1) ; v = s(2) ; r = s(3) ; X = s(4) ; Y = s(5) ; phi = s(6) ;

cphi = cos(phi) ; sphi = sin(phi) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% here is the control logic

desPhi = pi ;

errPhi = phi-desPhi ;

if errPhi < -pi, errPhi = errPhi + 2*pi ; end ;

if errPhi > pi, errPhi = errPhi - 2*pi ; end ;

desX = 1 ;

errX = X - desX ;

desY = 1 ;

errY = Y - desY ;

Fu = -.1*(errX*cphi - errY*sphi) ;

Fv = -.1*(errX*sphi + errY*cphi) - .3*v ;

M = -.1*(phi-desPhi)-.4*r ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%

udot = -u + Fu ;

vdot = Fv ;

rdot = M ;

Xdot = cphi*u - sphi*v ;

Ydot = sphi*u + cphi*v ;

phidot = r ;

sdot = [udot ; vdot ; rdot ; Xdot ; Ydot ; phidot] ;

29 FLIGHT CONTROL OF A HOVERCRAFT 107

%%

%%

function [sdot] = hoverCraftDeriv2(t,s);
global flag captureRadius ;

u = s(1) ; v = s(2) ; r = s(3) ; X = s(4) ; Y = s(5) ; phi = s(6) ;
cphi = cos(phi) ; sphi = sin(phi) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% here is the control logic
if ~flag,

waypointX = 15 ;

waypointY = -5 ;

else,
waypointX = 20 ;
waypointY = 20 ;

end;

desPhi = atan2(waypointY-Y,waypointX-X);

errPhi = phi-desPhi ;

if errPhi < -pi, errPhi = errPhi + 2*pi ; end ;

if errPhi > pi, errPhi = errPhi - 2*pi ; end ;

del = 0.2*errPhi + r ;

if norm([X-waypointX Y-waypointY]) < captureRadius,

flag = 1 ;

end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%

Fu = 1 ;

Fv = .2*del*Fu ;

M = -.2*del*Fu ;

udot = -u + Fu ;

vdot = Fv ;

rdot = M ;

Xdot = cphi*u - sphi*v ;

Ydot = sphi*u + cphi*v ;

phidot = r ;

sdot = [udot ; vdot ; rdot ; Xdot ; Ydot ; phidot] ;

29 FLIGHT CONTROL OF A HOVERCRAFT 108

%%

MIT OpenCourseWare
http://ocw.mit.edu

2.017J Design of Electromechanical Robotic Systems
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

