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28 Floating Structure in Waves 

We consider the pitch and heave dynamics of a large floating structure in a random sea. You 
can consider this a two-dimensional problem. 

The structure has two main, identical struts that pierce the water: each has area Aw of two 
hundred square meters, and their centers are separated by a distance L of fifty meters. The 
mass center of the structure is at the mid-point. The mass m is 1000 tons, and the mass 
moment of inertia about the centroid is J = 4.0 × 105ton · m2 . Each hull has an apparent 
linear damping in the vertical direction of b = 60kN · s/m. 

The horizontal motion of the structure is nearly zero. The vertical excitation force exerted at 
each of the struts may be approximated as the stiffness (provided by the strut’s water-plane 
area) times η − ζ , where  η is the wave elevation at the location of the strut’s center, and ζ 
is the vertical displacement of the strut. Make linearizations where needed. Note we do not 
take into account any added mass forces in this problem. Also, we assume that the mass 
center is low on the water, so that the pitching moment is generated exactly by the net loss 
of flotation on one side and/or the increase of flotation on the other. 

For the wave description, we use the Bretschneider spectrum; it is given by 

A −B/ω4 
S(ω) =  e , where 

ω5 

ωm = modal (or peak) frequency, rad/s 

B = 1.25ω4 ; A = 4BES; = H2 /16.m	 ES 1/3

In SeaState 5, we take the modal period as 9.7 seconds, and the significant wave height H1/3 

as 3.3m. We assume that the waves are all traveling in the same direction, from negative x 
toward positive x. 

1. Write a pair of differential equations, that express the heave motion of the center of 
mass (say z(t)), and the pitch motion (say φ(t)), in terms of the wave elevations at the 
two struts. Hint: use the fact that 

ζ(t, −L/2) = z(t) − φ(t)L/2, and so on. 

Solution: We have, using the hint, 

mz̈ =	 ρgAw[η(−L/2) − (z − Lφ/2) + η(L/2) − (z + Lφ/2)] − 

b[( ̇z − L ˙ z + L ˙φ/2) + ( ˙ φ/2)] 

= ρgAw[η(−L/2) + η(L/2) − 2z] − 2bż

Jφ ̈ =	 ρgAw 
L 

[−η(−L/2) + (z − Lφ/2) + η(L/2) − (z + Lφ/2)] + 
2 

L 
b[( ̇z − L ˙ z + L ˙φ/2) − ( ˙ φ/2)]

2 
L	 L2 

= ρgAw [η(L/2) − η(−L/2) − Lφ] − bφ.˙
2	 2 
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Because of cancelations in this symmetric situation, we end up with decoupled equa­
tions - i.e., the pitch motion does not affect the heave motion, and vice versa. 

2. What are the structure’s natural frequencies in heave and in pitch? Do these seem like 
a good design? 

Solution: The natural frequency in heave, obtained from the above equation with no 
wave excitation (η = 0) is  2ρgAw/m = 1.98rad/s, or a period  of  3.2sec. The natural 

frequency in pitch is ρgAwL2/2J = 2.48rad/s, or a period  of  2.5sec. These are quite 
fast compared to the frequencies that we expect in big seas - a three-second wave in 
the open ocean is generally quite small in amplitude, less than one meter. So it seems 
like a good design from the resonance point of view. 

3. Give a general expression for the wave elevation at one strut, as a function of the wave 
elevation at the other strut. To do this, write down the elevations for only one wave, 
at frequency ω. You will use the dispersion relation to work out the wavelength λ, and  
hence derive a frequency-dependent phase angle. 

Solution: We have 
2πL 

η(L/2) = η(−L/2) cos 
λ 

Lω2 

= η(−L/2) cos , 
g 

where the second expression is found by substituting the dispersion relation. 

4. Insert this result into your set of differential equations, and come up with an ODE for 
the heave being driven by waves (referenced to x = −L/2), and another for the pitch 
being driven by waves. Note your answers will have a ”weird” term similar to cos(ω2), 
which you can carry directly into the frequency domain (because the Fourier transform 
is an integration over time!). 

Solution: 

mz̈ + 2bż + 2ρgAwz = ρgAw(1 + cos(Lω2/g))η(−L/2) 
L2 L2 L 

Jφ ̈+ bφ̇ + ρgAwφ = − ρgAw(1 − cos(Lω2/g))η(−L/2). 
2 2 2 

5. What are the two transfer functions

z(jω) φ(jω)


and ? 
η(jω, x = −L/2) η(jω, x = −L/2) 

Solution: 
z(jω) ρgAw[1 + cos(Lω2/g)] 

= 
η(jω, x = −L/2) −mω2 + 2bjω + 2ρgAw 

φ(jω) L ρgAw[1 − cos(Lω2/g)] 
= − 2 . 

η(jω, x = −L/2) −Jω2 + L
2 
2 
bjω + L

2 
2 
ρgAw 
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6. Make a labeled plot of the Bretschneider wave spectrum for these SS5 conditions. 

See the attached graph. 

7. What are the significant heights (double amplitudes) of the heave and the pitch mo­
tions? Based on plots of the output spectra, about what are the dominant frequencies 
of these two motions? 

Solution: The significant heave height is 3.30m and the significant pitch height is 
0.121rad. The output spectra plots (attached) are interesting because the dominant 
frequency in the heave direction is close to the resonance, around 1.9rad/s, or  3.3  
seconds period. On the other hand, the pitch direction has a dominant frequency 
much lower, at about 0.75rad/s, or 8.4 seconds period - this is closer to the excitation 
frequency. You see that the effect of the different wavelengths gives rise to many peaks 
in the responses, and this ultimately controls the output spectra shapes. 

8.	 What are the heave and pitch amplitudes expected to be exceeded in ten minutes? one 
hour? one day? 

Solution: For heave the amplitudes that will be exceeded are [2.63 3.06 3.70] meters; 
for pitch, we find [0.094 0.110 0.134] radians. The formulas are (for the z part): 

� ∞ 
Miz = ωiSz(ω)dω 

0 

¯ M0z
Tz = 2π 

M2z 

f̄(Az) = [1/600 1/3600 1/86400] Hertz  

Az = −2M0z log f̄(Az)T̄z . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Heave and pitch response of a large floating structure 

clear all; 

wm = 2*pi/9.7 ; % modal frequency of waves, rad/s 
Hsig = 3.3 ; % significant wave height, m 
wvec = 0.001:0.001:4 ; % vector of frequencies to consider 

% make up the Bretschneider spectrum 
for j = 1:length(wvec), 

w = wvec(j) ; 
S(j) = 5/16 * wm^4 / w^5 * Hsig^2 * exp(-5 * wm^4 / 4 / w^4) ; 

end; 
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% check that we got the right formula! 
disp(sprintf(... 

’Square Root of Integral of Area of S: %g; Hsig/4: %g’, ... 
sqrt(sum(S)*mean(diff(wvec))), 1/4*Hsig)); 

% plot the spectrum

figure(1);clf;hold off;

subplot(211);

plot(wvec,S,’LineWidth’,2);

grid;

title(’Sea Wave Spectra for Sea State 5’);

xlabel(’frequency \omega, rad/s’);

ylabel(’S(\omega)’);


print -deps bigStructure.eps


% give the physical parameters of the structure

L = 50 ; % distance between flotation centers, m

m = 1e6 ; % material mass, kg

J = 4e8 ; % material rotary moment of inertia, kg-m^2

Aw = 200 ; % waterplane area per hull, m^2

rho = 1000 ; % water density, kg/m^3

g = 9.81 ; % gravity, m/s^2

b = 60000 ; % linear damping coefficient in vertical direction,


% per hull, N/(m/s) 

% compute the numerical transfer functions from wave elevation at 
% x=-L/2 to height (z) and pitch angle (phi). The units are 
% meter/meter and rad/meter 
for i = 1:length(wvec), 

w = wvec(i) ; 
eta2z(i) = (1 + cos(L*w*w/g))*rho*g*Aw / ... 

(-m*w^2 + sqrt(-1)*w*2*b + 2*g*Aw*rho) ; 
eta2phi(i) = -(1 - cos(L*w*w/g))*rho*g*Aw*L/2 / ... 

(-J*w^2 + sqrt(-1)*w*L^2/2*b + rho*g*Aw*L^2/2) ; 
end; 

% (undamped) natural frequencies

wnz = sqrt(2*g*Aw*rho/m) ;

wnphi = sqrt(rho*g*Aw*L^2/2/J) ;

disp(sprintf(’Natural frequencies: %g rad/s (heave)’, wnz));

disp(sprintf(’ %g rad/s (pitch)’, wnphi));


% get the spectra of the heave motion and the pitch angle.
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% (Take only the real part because there are some parasitic,

% tiny imaginary parts that are annoying.)

Sz = real(S.*eta2z.*conj(eta2z)) ;

Sphi = real(S.*eta2phi.*conj(eta2phi)) ;


% plot these spectra

figure(2);clf;hold off;

subplot(211);

plot(wvec,Sz,’LineWidth’,2);

grid;

ylabel(’S_z, m^2s’);

subplot(212);

plot(wvec,Sphi,’LineWidth’,2);

grid;

ylabel(’S_{\phi}, rad^2 s’);

xlabel(’frequency, rad/s’);

print -deps bigStructure2.eps


% compute the significant heights of the heave and the pitch motions

zsig = 4*sqrt(sum(Sz)*mean(diff(wvec))) ;

phisig = 4*sqrt(sum(Sphi)*mean(diff(wvec))) ;

disp(sprintf(’Significant z height: %g m’, zsig));

disp(sprintf(’Significant phi height: %g rad’,phisig));


% compute the ten-minute, one-hour, and one-day extreme amplitudes

M0z = sum(Sz)*mean(diff(wvec)); % moments of the spectra

M2z = sum(Sz.*wvec.^2)*mean(diff(wvec));

M0phi = sum(Sphi)*mean(diff(wvec));

M2phi = sum(Sphi.*wvec.^2)*mean(diff(wvec));


Tbarz = 2*pi*sqrt(M0z/M2z) ; % average period

Tbarphi = 2*pi*sqrt(M0phi/M2phi) ;


fbarA = [1 1 1]./[10*60 60*60 24*60*60] ; % event frequencies, Hz


Az = sqrt(-2*zsig^2/16*log(Tbarz*fbarA));

Aphi = sqrt(-2*phisig^2/16*log(Tbarphi*fbarA));


disp(’Ten-minute, one-hour, and one-day amplitudes:’);

disp(sprintf(’Heave: %g %g %g m’, Az(1),Az(2),Az(3)));

disp(sprintf(’Pitch: %g %g %g rad’, Aphi(1),Aphi(2),Aphi(3)));


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Sea Wave Spectra for Sea State 5
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