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22 Aircraft in Winds 

This problem builds on the previous one: you will use the same wind gust spectrum, and 
study the response of an air vehicle that is being buffeted by it. Here is the spectrum of the 
wind again, along with a picture of the aircraft: 
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The aircraft has a forward speed of U = 60m/s, or about 120 knots. It employs GPS 
navigation and a simple feedback loop to stay on a given straight-line path. In particular, 
the feedback law is φ = 0.003 × e, where  φ is the controlled heading of the vehicle relative 
to the desired line of travel, and e is the cross-track error, i.e., the position of the aircraft 
in the direction normal to the desired line of travel. Thus, a cross-track error of ten meters 
leads to a heading command of 0.03 radians, which points the vehicle back toward the track. 
We assume that wind gusts do not affect the heading of the craft directly, but that there is 
a very good heading controller, that will make the vehicle follow the desired φ very closely. 

1. Making the linearizing assumption that	 φ is small, and including the feedback law, 
what is the differential equation relating wind gust velocity w(t) to cross-track error 
e(t)? What is the transfer function E(jω)/W (jω)? Note that the aircraft has negligible 
mass. Hint: it is a low-pass filter. 

Solution: The linearization is ė = −Uφ  + w or ė = −60 × 0.003 × e + w. Note  we  
have not allowed for any sideslip in the the vehicle - that is, it travels exactly in the 
direction it is pointing. The transfer function taking the disturbance to the error is 
F (jω) =  E(jω)/W (jω) = 1/(jω + 0.18). 

2. Make a plot of one thousand seconds of	 w(t) just as in Homework 4, and show the 
corresponding system output e(t), in meters. For this, you need to solve the differential 
equation numerically. 

See attached code and the first two plots. 

3. Using the Wiener-Khinchine relation, make a plot of Se(ω). Then calculate the signif­
icant error ē1/3, and plot the plus and minus values of this on your time domain plot 
above. 

The W-K relation says that 

Se(ω) =  |F (jω)|2Sw(ω), 

so all you need is a pointwise multiplication in frequency space of the input spectrum 
Sw(ω) by the squared magnitude of the transfer function, |F (jω)|2. See  the  code  and  
spectrum plot. The significant value of the error amplitude ē1/3 is 7.44 meters. 

4. What happens to ē1/3 as you increase or decrease the feedback gain from 0.003, say to 
zero and to 0.006? 

Setting the heading gain to zero means there is no corrective action, and the cross-track 
error just follows the integral of the disturbance (in the manner of a random walk). 
Increasing the gain to 0.006 makes the control action stronger; the error is reduced and 
the frequency content of the error seems higher. In fact, the higher gain is reducing 
more of the low-frequency part of the error. See the last two sets of plots. 
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Figure 5: Time series of wind input and error output, for gain of 0.003. 
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Figure 6: Input and output spectra, with gain 0.003.
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Figure 7: Time series of wind input and error output, for gain of zero - the wind is simply 
integrated. There is no significant amplitude because |F | is unbounded at low frequencies, 
and hence the output spectrum is also unbounded here. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Aircraft response under simple trackline control 

function aircraft 

clear all; 

U = 60 ; % aircraft speed 
k = 0.003 ; % heading gain, rad/m 

cph = [0 10 14 20 32 50 71 100 141 200 ... 
320 500 710 1000 1400 2000] ; % freq., in cycles per hour 

Sw = [0 .5 .65 1, 2.8 3.1, 2.8 2 ... 
1.6 1.2 .8 .6 .5 .4 .2 0] ; % spectrum to go with cph frequencies 

omega = cph*2*pi/3600 ; % freq., radians/second 

widths = ([0 diff(omega)] + [diff(omega) 0])/2 ; % make the strip widths 
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Figure 8: Time series of wind input and error output, for gain of 0.006.


% compute the amplitudes that go with each frequency, and pick 
% some random phase angles, uniformly distributed in [0,2*pi] 
for i = 1:length(widths), 

a(i) = sqrt(2*Sw(i)*widths(i)) ; 
ph(i) = rand*2*pi ; 

end; 

dt = .1 ; % time step 

j = 1:10001 ; 
w = zeros(size(j)); 
t = dt*(j-1) ; 
for i = 1:length(widths), 

w = w + a(i)*cos(omega(i)*t + ph(i)) ; 
end; 

figure(1);clf;hold off;

subplot(211);

plot(t,w) ;

grid on; xlabel(’seconds’); ylabel(’w(t), m/s’);
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e(1) = 0 ; 
for i = 2:length(t), 

k1 = dt*f( t(i-1), e(i-1), w(i-1), U, k); 
k2 = dt*f( t(i-1)+dt/2, e(i-1)+k1/2, (w(i-1)+w(i))/2, U, k ); 
e(i) = e(i-1) + k2 ; 

end;


figure(1);

subplot(212);

plot(t,e);

grid on; xlabel(’seconds’); ylabel(’e(t), m’);


for i = 1:length(omega), 
H(i) = 1 / (sqrt(-1)*omega(i) + U*k) ; 
H2(i) = H(i)*conj(H(i)) ; 

end;


Se  =  H2 .* Sw ; 


evar = sum(Se.*widths);

esig = 2*sqrt(evar);

disp(sprintf(’Significant value of e: %g m’, esig));


figure(1);

subplot(212); hold on;

plot([min(t) max(t)], esig*[1 1],’r--’);

plot([min(t) max(t)], -esig*[1 1],’r--’);

text(1020,esig,’+e_{1/3}’);

text(1020,-esig,’-e_{1/3}’);


figure(2);clf;hold off;

subplot(211);

semilogx(omega, 10*Sw, omega, H2,’:’, omega, Se,’--’, ’LineWidth’,2) ;

legend(’10*S_w, m^2/s’, ’|H|^2, s^2’,’S_e, m^2s’);

xlabel(’rad/s’);

grid;


function [edot] = f(t, e, w, U, k) 
edot = -U*k*e + w ; 

return ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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