
13 NUMERICAL SOLUTION OF ODE’S 28

13 Numerical Solution of ODE’s

In simulating dynamical systems, we frequently solve ordinary differential equations. These
are of the form

dx
= f(t, x),

dt

where the function f has as arguments both time and the state x. The time argument
is used if the system is time-dependent (time-varying), but unnecessary if the system is
time-invariant. Solving the differential equation means propagating x forward in time from
some initial condition, say x(t = 0), and typically the solution will be given as a vector of
[x(0), x(∆t), x(2∆t), · · ·], where ∆t is a fixed time step.

The Taylor series is used to derive most of the simple formulas for solving ODE’s. The
general Taylor series expansion of the generic function g in two variables is

g(t + ∆t, x + ∆x) = g(t, x) +
∂g

∂t
∆t +

∂g

∂x
∆x +

1

2!

∂2g

∂t2
∆t2 +

1

2!

∂2g

∂t∂x
∆t∆x +

1

2!

∂2g

∂x∂t
∆x∆t +

1

2!

∂2g

∂x2
∆x2 + · · · .

In the above formula, when the arguments of g and its derivatives are not shown, we mean
that it is to be evaluated at (t, x), that is g alone means g(t, x) and so on. We use this
shorthand below in several places. The simplest of all the ODE methods is forward Euler,
created by setting g = x and looking only at the first two terms on the right-hand side of
the Taylor series:

x(t + ∆t) = x(t) +
dx

dt
∆t = x(t) + ∆tf

This formula says that x at the next time instant is the current x plus the time step times
the slope evaluated at the current x. Referring to the Taylor series, we see that the forward
Euler does not do anything with the second-order terms (∆t2 and beyond), and so we say the
method is second-order accurate in the step, which will turn out to be first-order accurate
when you solve a real problem with many steps. First-order means that if you halve the
time step, you can expect about half the error in the overall simulation.

An alternative, the Runge-Kutta methods are popular workhorses, and implemented in the
MATLAB commands ode23() and ode45(). Let’s take a look at the first of these: The rule
is

k1 = ∆tf

k2 = ∆tf(t + ∆t/2, x(t) + k1/2)

x(t + ∆t) = x(t) + k2

We see that k1 is the same change in x as given by the forward Euler rule. k2 is another
guess for the change in x, but with the slope calculated at the approximate midpoint [t +

.

�	 �

�	 �

�	 �

13 NUMERICAL SOLUTION OF ODE’S	 29

Δt/2, x(t) + k1/2]. You can guess that this will be a somewhat more accurate result. Note,
however, that we have to evaluate the function twice in each time step, as opposed to once
each time step for the forward Euler method.

Here are your two problems:

1. The listed Runge-Kutta algorithm is third-order accurate in the step and second-order
accurate in the whole: in each step, we get a cancelation of all the second-order terms
in the Taylor series! Can you figure out how to show this?

Solution: We have to show that the Runge-Kutta formula captures up to second-order
terms in the Taylor series. First, the formula for k2 is itself approximated as a Taylor
series:

k2 = Δtf(t + Δt/2, x + k1/2)
Δt ∂f k1 ∂f

= Δt f + + + h.o.t.
2	 ∂t 2 ∂x

Δt ∂f Δt ∂f
= Δt f + + f + h.o.t. ,

2	 ∂t 2 ∂x

where we again assume evaluation of functions at x(t) and t when the argument is
omitted. The first relation comes from the bivariate Taylor series, and the second by
substituting in k1. The acronym h.o.t. stands for ”higher-order terms.” Next, write
out x(t + Δt) according to the last line of the RK2 rule:

x(t + Δt) = x + k2

Δt2 ∂f ∂f
= x + Δtf + + f + h.o.t.

2 ∂t ∂x

You recognize the first two terms in the square brackets here as the total derivative
of (bivariate) f with t, which is the second derivative of x with time. How does this
result look compared to the direct Taylor series for x? We have for the univariate
Taylor series applied to x:

dx Δt2 dx2

x(t + Δt) = x + Δt + + h.o.t.
dt 2 dt2

So the RK2 formula does indeed capture the first- and second-order terms of the Taylor
series. Note that the h.o.t. that appears when we worked with k2 is not the same as
the h.o.t. that appears in the direct expansion of x - so we cannot claim that the
third-order terms are captured in the RK2 rule. RK4 (shown below) captures both the
third- and fourth-order terms!

2. Compare	 the error convergence rates, for the forward Euler and the second-order
Runge-Kutta on the simple problem dx/dt = −x, x(t = 0) = 1. To do this, you
will make several simulations with each method, over the time scale [0, 5], and with

13 NUMERICAL SOLUTION OF ODE’S 30

∆t = [0.0125 0.025 0.05 0.10 0.20 0.50 1.00]. For each, record the maximum absolute
error with respect to the exact solution (a decaying exponential), and then make a
summary plot of ∆t versus error, including both methods. You should be able to see
the first-order convergence of forward Euler and the second-order convergence of RK2.

As an aside, forward Euler has stability problems that are more severe than for the Runge-
Kutta family, and this is another reason why forward Euler should usually not be your first
choice.

Please do not use the canned MATLAB ODE functions to solve the second problem. I am
asking you to make the explicit calculations for programming practice, to see the error rates
first-hand, and because we sometimes don’t have MATLAB available where needed, e.g., on
an embedded processor.

Solution: See MATLAB results and code below. The Euler method is first-order: a ten-
fold reduction in ∆t gives a ten-fold reduction in error. RK2 is second-order: the ten-fold
reduction in ∆t gives a one-hundred-fold reduction in error. Most impressive, the RK4 is
fourth-order so we get a ten-thousand-fold improvement for a ten-fold reduction in ∆t. Note
that RK4 requires four evaluations per time step, and RK2 requires two. But it is usually
well worth it! Finally, notice that the RK2 and the forward Euler both give awful errors
with ∆t = 1. This is no surprise, since the time constant of the system is one also. The RK4
gives us a much better result here, the result of those extra evaluations.

10
−2

10
−1

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

dt

m
ax

 |e
rr

or
|

Euler
RK2
RK4

Errors for the Different dt’s and Methods:

dt: 0.013 Euler: 2.31e-003 RK2: 9.67e-006 RK4: 7.56e-011

dt: 0.025 Euler: 4.65e-003 RK2: 3.90e-005 RK4: 1.22e-009

dt: 0.050 Euler: 9.39e-003 RK2: 1.59e-004 RK4: 2.00e-008

13 NUMERICAL SOLUTION OF ODE’S 31

dt: 0.100
dt: 0.200
dt: 0.500
dt: 1.000

Euler:
Euler:
Euler:
Euler:

1.92e-002
4.02e-002
1.18e-001
3.68e-001

RK2: 6.62e-004
RK2: 2.86e-003
RK2: 2.27e-002
RK2: 1.32e-001

RK4:
RK4:
RK4:
RK4:

3.33e-007
5.80e-006
2.91e-004
7.12e-003

13 NUMERICAL SOLUTION OF ODE’S 32

%%

% Show the error properties of forward Euler vs.

% second-order and fourth-order Runge-Kutta integration schemes.

function simEulerRK2

clear all;

tfinal = 5 ; % final simulation time

dtvector = [.0125 .025 .05 .1 .2 .5 1] ; % vector of dt’s to try

xinitial = 1 ; % initial value of x

figure(1);clf;hold off;

figure(2);clf;hold off;

subplot(’Position’,[.2 .2 .5 .5]);

disp(’Errors for the Different dt’’s and Methods:’);

fn = fopen(’simEulerRK2.dat’,’w’);

fprintf(fn,’Errors for the Different dt’’s and Methods:\n’);

for dt = dtvector, % cycle through all the dt’s

n = tfinal/dt ; % the number if steps to take

timevector = 0:dt:n*dt ; % vector of times (length n+1)

exact = exp(-timevector); % exact solution to the diff eqn:

% x’ = f(t,x)

xEuler(1) = xinitial ; % initial value for the Euler rule

xRK2(1) = xinitial ; % initial value for the RK2 rule

xRK4(1) = xinitial ; % initial value for the RK4 rule

% do the Euler version
for i = 1:n,

t = timevector(i) ;

xEuler(i+1) = xEuler(i) + dt*f(t,xEuler(i)) ;

end;

% do the RK2 version
for i = 1:n,

t = timevector(i) ;

k1 = dt*f(t,xRK2(i)) ;

k2 = dt*f(t+dt/2, xRK2(i)+k1/2) ;

xRK2(i+1) = xRK2(i) + k2 ;

end;

13 NUMERICAL SOLUTION OF ODE’S 33

% do the RK4 version!
for i = 1:n,

t = timevector(i) ;

k1 = dt*f(t,xRK4(i)) ;

k2 = dt*f(t+dt/2, xRK4(i)+k1/2) ;

k3 = dt*f(t+dt/2, xRK4(i)+k2/2) ;

k4 = dt*f(t+dt, xRK4(i)+k3) ;

xRK4(i+1) = xRK4(i) + (k1 + 2*k2 + 2*k3 + k4) / 6 ;

end;

figure(1);
plot(timevector,log10(abs(xEuler-exact)),’b’,...

timevector,log10(abs(xRK2-exact)),’r’,...

timevector,log10(abs(xRK4-exact)),’g’,’LineWidth’,2) ;

hold on;

grid;

disp(sprintf(...

’dt: %5.3f Euler: %6.2e RK2: %6.2e RK4: %6.2e’,...

dt, max(abs(xEuler-exact)), max(abs(xRK2-exact)), ...

max(abs(xRK4-exact))));

fprintf(fn,...

’dt: %5.3f Euler: %6.2e RK2: %6.2e RK4: %6.2e\n’,...

dt, max(abs(xEuler-exact)), max(abs(xRK2-exact)), ...

max(abs(xRK4-exact)));

figure(2);
loglog(dt, (max(abs(xEuler-exact))),’o’,...

dt,(max(abs(xRK2-exact))),’s’, ...

dt, (max(abs(xRK4-exact))),’d’,’LineWidth’,2);

hold on;
if dt == max(dtvector),

legend(’Euler’,’RK2’,’RK4’,4);

xlabel(’dt’);

ylabel(’max |error|’);

grid;

end;

clear n timevector exact xEuler xRK2 xRK4 t k1 k2 k3 k4 ;
end;
fclose(fn);
figure(2);
print -deps simEulerRK2.eps

13 NUMERICAL SOLUTION OF ODE’S 34

% here is the function definition
function [dxdt] = f(t,x) ;

dxdt = -x ;

%%

MIT OpenCourseWare
http://ocw.mit.edu

2.017J Design of Electromechanical Robotic Systems
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

