4 Bretschneider Spectrum Definition

The formula for the Bretschneider (one-sided) ocean wave spectrum is

$$S(\omega) = \frac{5}{16} \frac{\omega_m^4}{\omega^5} H_{1/3}^2 e^{-5\omega_m^4/4\omega^4}$$

where ω is frequency in radians per second, ω_m is the modal (most likely) frequency of any given wave, and $H_{1/3}$ is the significant wave height. Make a single figure that shows the Bretschneider spectrum (S as a function of ω) for these cases:

SeaState	$2\pi/\omega_m$, sec	$H_{1/3}, {\rm m}$
2	6.3	0.3
3	7.5	0.9
4	8.8	1.9
5	9.7	3.3
6	12.4	5.0

Here is the MATLAB code I used and the resulting figure:

```
% 2.017 Homework 1. Bretschnieder Spectrum.
% FSH MIT Mechanical Engineering
clear all;
figure(1); clf; hold off; hold on; % note: hold is on so we can overlay
                              % figures
% show the data from the table in the problem
SSvec = [2 3 4 5 6]; % sea states
wmvec = 2*pi*ones(size(SSvec)) ./ [6.3 7.5 8.8 9.7 12.4] ;
                                       % modal frequencies
Hsigvec = [0.3 \ 0.9 \ 1.9 \ 3.3 \ 5.0]; % significant wave heights
% vector of frequencies for the spectrum calculation
wvec = [.1:.01:2];
% step through the different seastates
for i = 1:length(wmvec),
  wm = wmvec(i);
  Hsig = Hsigvec(i) ;
  SS = SSvec(i);
```

```
for j = 1:length(wvec),
     w = wvec(j);
     S(j) = 5/16 * wm^4 / w^5 * Hsig^2 * exp(-5 * wm^4 / 4 / w^4) ;
  end;
  % check that we got the right formula!
  disp(sprintf(...
     'Square Root of Integral of Area of S: %g; 4*Hsig: %g', ...
     sqrt(sum(S)*mean(diff(wvec))), 1/4*Hsig));
  % add on the curves and some labels
  plot(wvec,S,'LineWidth',2);
  if SS > 3,
     text(wm-.18,max(S),sprintf('SS %g', SS));
  end;
end;
% finish off the plot
grid;
title('Sea Wave Spectra for Sea States 2-6');
xlabel('frequency \omega, rad/s');
ylabel('S(\omega)');
print -deps hw1_bret.eps
```


2.017J Design of Electromechanical Robotic Systems Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.