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Added Mass 

For the case of unsteady motion of bodies underwater or unsteady flow around objects, we 
must consider the additional effect (force) resulting from the fluid acting on the structure 
when formulating the system equation of motion.  This added effect is added mass.  Most 
floating structures can be modeled, for small motions and linear behavior, by a system 
equation with the basic form similar to a typical mass-spring-dashpot system described by 
the following equation: 

( )  (6.1)mx�� + bx� + kx = f t 

where m is the system mass, b is the linear damping coefficient, k is the spring coefficient, 
f(t) is the force acting on the mass, and x is the displacement of the mass. The natural 
frequency ω of the system is simply 

k . (6.2)ω = 
m 

In a physical sense, this added mass is the weight added to a system due to the fact that an 
accelerating or decelerating body (ie. unsteady motion: ≠dU dt 0 ) must move some 
volume of surrounding fluid with it as it moves. The added mass force opposes the motion 
and can be factored into the system equation as follows: 

( )  − m x �� (6.3)mx�� + bx� + kx = f t a 

where ma is the added mass. Reordering the terms the system equation becomes:  

( m m  ) �� + bx  � + kx  = f  t  + x ( )  (6.4)a

From here we can treat this again as a simple spring-mass-dashpot system with a new mass 
mm′ = +  m such that the natural frequency of the system is now a 

kω′ = 
k 

= (6.5)
m′ m +ma 

It is important in ocean engineering to consider floating vessels or platforms motions in 
more than one direction. Added mass forces can arise in one direction due to motion in a 
different direction, and thus we can end up with a 6 x 6 matrix of added mass coefficients.  
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Looking simply at a body in two-dimensions we can have linear motion in two directions 
and rotational motion in one direction. (Think of these coordinates as if you were looking 
down on a ship.) 

 Two dimensional motion with axis (x,y) fixed on the body. 1: Surge, 2: Sway, 6: Yaw 

The unsteady forces on the body in the three directions are: 

− =  m11  
du1 +m du2 +m du6 (6.6)F1  12  dt 16  dt dt 

−F2 = m21  
du1 +m du2 +m du6 (6.7)
dt 22  dt 26  dt 

−F6 = m61  
du1 +m du2 +m du6 (6.8)
dt 62  dt 66  dt 

Where F1, F2, and F6, are the surge (x-) force, sway (y-) force and yaw moments 
respectively. It is common practice in Ocean Engineering and Naval Architecture to write 
the moments for roll, pitch, and yaw as F4, F5, and F6 and the angular motions in these 
directions as X4, X5, and X6. 

This set of equations, (6.6)-(6.8), can be written in matrix form, F = [ ]  � ,M u

⎛ du1 ⎞ 
⎟⎜ dt⎡m11 m12 m16 ⎤ ⎜ ⎟ 

F = ⎢
⎢m21 m22 m26 ⎥

⎥
⎜
⎜ du2 ⎟ (6.9)

dt ⎟ 
⎣ ⎟⎢m61 m62 m66 ⎦⎥ ⎜ du6⎜ ⎟⎜

⎝ dt ⎠⎟ 
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Considering all six degrees of freedom the Force Matrix is: 

�u1⎡m11 m12 m13 m14 m15 m16 ⎤ ⎛ ⎞ 
⎢ ⎥ ⎜ ⎟�u2 

m 
⎢m21 m22 m23 m24 m25 m26 ⎥ ⎜ ⎟  

36 ⎥ ⎜ ⎟�⎢m31 m32 m33 m34 m35 u3F = ⎢ ⎥ ⎜ ⎟  (6.10)
�u4 

m 
⎢m41 m42 m43 m44 m45 m46 ⎥ ⎜ ⎟  

56 
⎥ ⎜ ⎟�⎢m51 m52 m53 m54 m55 u5⎢ ⎥ ⎜ ⎟⎜ ⎟�⎣ u6⎢m61 m62 m63 m64 m65 m66 ⎦⎥ ⎝ ⎠ 

We will often abbreviate how we write the Force matrix given in (6.10) using tensor 
notation. 

The force vector is written as 

= , where i =1 2  3  4  5  6 , (6.11)F Fi , , , , ,N N 
Linear Moments 
Forces 

the acceleration vector as 

2 ,u�i = [ ,  u u3, u u5 , u ] , (6.12)u1 4 , 6 

and the added mass matrix [ma] as 

,mij where i j =1, 2, 3, 4, 5, 6 . (6.13) 

i 

A good way to think of the added mass components, mij , is to think of each term as mass 
th jthassociated with a force on the body in the direction due to a unit acceleration in the 

direction. 

For symmetric geometries the added mass tensor simplifies significantly. For example, 
figure 2 shows added mass values for a circle, ellipse, and square. In the case of the circle 
and square, movement in the 1 and 2 directions yields similar geometry and identical added 
mass coefficients ( m = m22 ).11 
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Circle Ellipse Square 
2 2 2m11 = m22 = ρd m11 = ρπb m11 = m22 =1 51  πρa. 

2 4m66 = 0 m22 = ρπa m66 0 234 πρa= .  

⎛ 2m66 = ρ⎜a −b2 ⎞
⎟
⎠ 

2 

⎝ 

 Two dimensional added mass coefficients for a circle, ellipse, and square in 1: Surge, 2: Sway, 6: Yaw 

Using these coefficients and those tabulated in Newman’s Marine Hydrodynamics on 
p.145 we can determine the added mass forces quite simply.  

In three-dimensions, for a sphere (by symmetry):  

1 m11 = m22 = m33 = ρ∀ = mA (6.14)
2 

ALL OTHER mij  TERMS ARE ZERO ( i ≠ j ). 
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General 6 DOF forces and moments on a Rigid body moving in a fluid: 

Velocities: 

G
Translation Velocity U t 1, 2: ( )  = (U U ,U3) (6.15) 

G
t ( )Rotational Velocity : Ω( )  = Ω ,Ω ,Ω  ≡  (U ,U5 ,U ) (6.16)1 2 3 4 6 

All rotation is taken with respect to Origin of the coordinate system (often placed at the 
center of gravity of the object for simplicity!). 

1  2 3 4 5 6 and  j, , =  1,  2,  3)Forces:  (force in the jth direction). ( i = , , , , ,  k  l  

Fj = −U� i mij −ε jkl Ui Ωk m (6.17)li  

1  2 3 4 5 6 and  j, , =  1,  2,  3)Moments: ( i = , , , , ,  k  l  

M j = −U� i mj + , i −ε jklUi Ωk ml + , i −ε jkl U  U  mli  (6.18)3 3 k i 

Einstein’s summation notation applies!    

The alternating tensor ε jkl  is simply 

, ,⎧ 0; if any j k  l  are equal
⎪ , ,ε jkl = ⎨ 1; if j k l   are in cyclic order (6.19) 
⎪ , ,⎩−1; if j k l   are in anti-cyclic order 

The full form of the force in the x-direction (F1) is summed over all values of i: 

F1 = −U� 1 m11  −U� 2 m21  −U� 3 m31  −U� 4 m41  −U� 5 m51  −U� 6 m61  N N �	
  �	
 �	
 �	
 �	
 
j=1 i=1 i=2 i=3 i=4 i=5 i=6 

U2 Ωk ml 2 −ε U3 Ωk ml 3 −ε1kl �	��−ε1kl U1 Ωk ml1 −ε1kl �	�� 1kl �	�� U4 Ωk ml 4 (6.20)��	�
 �� 
 �� 
 �� 
 
i=1 i=2 i=3 i=4 

−ε U5 Ωk ml 5 −ε1kl �	��1kl �	�� U6 Ωk ml 6�� 
 �� 
 
i=5 i=6 

for k l, =1, 2, 3 . 

version 3.0 updated 8/30/2005 -5- ©2005 A. Techet 



2.016 Hydrodynamics Reading  #6 

Next we can choose the index k to cycle through. It is helpful to note that the only terms 
where k plays a role, contain ε jkl . Following the definition for ε jkl given in (6.19) and 
since j = 1, all terms will be zero for k = 1. Therefore k can only take the value of 2 or 3: 

F1 = −U� 1 m11  −U� 2 m21  −U� 3 m31  −U� 4 m41  −U� 5 m51  −U� 6 m61  N N �	
 �	
 �	
 �	
 �	
 
j=1 i=1 i=2 i=3 i=4 i=5 i=6 

−ε12  l U1 Ω2 ml1 −ε12  l �	�� U3 Ω2 ml 3 −ε12  l �	�� U5 Ω2 ml 5 −ε12  l �	��U2 Ω2 ml 2 −ε12  l �	�� U4 Ω2 ml 4 −ε12  l �	�� U6 Ω2 ml 6��	�
 �� 
 �� 
 �� 
 �� 
 �� 
 
i=1 i=2 i=3 i=4 i=5 i=6������������������	�����������������
 

k =2 

−ε13  l U1 Ω3 ml1 −ε13  l U2 Ω3 ml 2 −ε13  l�	�� U5 Ω3 ml5 −ε13  l U6 Ω3ml 6U3 Ω3 ml 3 −ε13  l U4 Ω3 ml 4 −ε13  l �	���	�� �	�� �	����	�
 �� 
 �� 
 �� 
 �� 
 �� 
 
i =1 i=2 i=3 i=4 i=5 i=6������������������	�����������������
 

k =3 

(6.21) 

Finally we cycle through the index l. Again it is helpful to note that the only terms where l 
plays a role, contain ε jkl . Following the definition for ε jkl given in (6.19) and since j = 1, 
and k = 2 or 3, then all terms will be zero for l = 1 and some zero for the case l = 2 and 
others zero when l =3. Like before l can only take the value of 2 or 3 such that l k≠ ≠ j : 

F1 = −U� 1 m11  −U� 2 m21  −U� 3 m31  −U� 4 m41  −U� 5 m51  −U� 6 m61  N N �	
 �	
 �	
 �	
 �	
 
j=1 i=1 i=2 i=3 i=4 i=5 i=6 

−ε123�	�� U2 Ω2 m32 −ε123 �	�� U4 Ω2 m34 U5 Ω2 m35 −ε123 �	��U1 Ω2 m31 −ε123�	�� U3 Ω2 m33 −ε123 �	�� −ε123 �	�� U6 Ω2 m36  �� 
 �� 
 �� 
 �� 
 �� 
 �� 
 
i=5 i=6 
i=1 i=2 i=3 �	������������������������������������ i=4


k =2; l =3


−ε132�	�� −ε132 U2 Ω3 m22 −ε U3 Ω3 m23 −ε132 U4 Ω3 m24 −ε132 �	�� U6 Ω3m26U1 Ω3 m21 �	�� 132 �	�� �	�� U5 Ω3 m25 −ε132 �	���� 
 �� 
 �� 
 �� 
 �� 
 �� 
 
i=5 i=6 
i =1 i=2 i=3 �	������������������������������������ i=4


k =3; l =2


(6.22) 

On the second row of the equation above, the indices of the alternating tensor, ε jkl , are in 
cyclic order jkl = 123 ( ε = +1). In the third row, the indices are in anti (or reverse) cyclic 123 

order: ε = −1 where jkl = 132.132 

More than likely you will never have to write out all six force equations with all the terms 
as the velocity and acceleration of the body will be zero in certain directions. However for 
a full seakeeping analysis of a ship then one day you just might need to be able to determine 
all the forces! 
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Typical Example: For a body moving in the fluid with velocity  

K
V = (1,0,1,0,0,1)  = (U ,0,  U ,  0,  0,  U ) = (U ,0,  U ,  0,  0,  Ω ) (6.23)1 3 6 1 3 3 

and acceleration 

a K = (1,0,0,0,0,1)  = (U� ,0,0,0,0,  U� ) (6.24)1 6 

 we can find the force on the body in the X-direction.  The force in the x-direction is F1 so 
j=1. 

First substitute “1” for every instance of j in equation (6.17) to get: 

Fj=1 = F1 = −U� i mi1 −ε1kl Ui Ωk mli  (6.25) 

Next we need to “cycle” through the possible values for i  (i = 1,2,3,4,5,6). Looking at 
equation (6.25), it is clear that the only “ith” accelerations that will matter are the non-zero 

� �ones from (6.24), thus U1 and U6 , and the only “ith” velocities to consider are for i = 1,3, 
and 6 [eqn (6.23)]. 

F1 = −U� 1 m11  −U� 6 m61  −ε1kl U1 Ωk ml1 −ε1kl �	�� U6 Ωk ml 6 (6.26)U3 Ωk ml 3 −ε1kl �	��N �	
 ��	�
  �� 
 �� 

i=1 i=6 i=1 i=3 i=6 

jNow look at the k-index: ( k ≠ ∴k = 2, 3 ) However Ω2 = 0 and Ω  ≠  0 thus for k = 2 all3 

associated terms will be zero, so we only have to deal with k = 3. Since j =1and k = 3the 
only value left for l, that could result in non-zero terms, is 2.  

F1 = −U� 1 m11  −U� 6 m61  N �	
 
i=1 i=6 

(6.27)U1 Ω3 m21 �	�� U6 Ω3 m26 −ε132 �	�� −ε132 U3 Ω3 m23 −ε132 �	���� 
 �� 
 �� 
 
i=1 i=3 i=6���������	��������


k =3; l =2 

If the body in question was a simple, symmetrical sphere we could reduce this even further. 
Using the added mass values from (6.14) and trusting that the off-diagonal added mass 
terms are zero (just for the sphere), the force in the x-direction on a sphere, given (6.23) and 
(6.24), is 

F1 = −U� 1 m11  (6.28)N
i=1 
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Determining 3D Added Mass Using Slender Body Theory 

To formulate the added mass of a system such as a ship or submarine that can be modeled 
as a slender body, we first need the two-dimensional sectional added mass coefficients.  
We will consider a slender body to have a characteristic length in one direction that is 
considerably longer than its length in the other two directions.  For these slender bodies we 
can use known 2D coefficients to find the unknown 3D added mass coefficient for the 
body. 

The added mass force acting on the body due to unsteady motion is  

Fj = −U� i mij −ε jkl Ui Ωk m (6.29)li  

where mij is the added mass in the ith direction due to a unit acceleration in the jth direction 
and i,j = 1:6.   The added mass tensor, mij , is symmetric!  

To find the 3D added mass coefficients consider simply the body geometry, ignoring for 
now the actual motions of the vessel.  To start, orient the 1-axis along the long axis of the 
slender body as shown in figure 1. The 3D added mass coefficients will be found by 
summing (or integrating) the added mass coefficients of the 2D cross-sectional slices along 
the body. 

Slender body oriented with the long axis in the 1-direction. 
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The sectional added mass coefficients are tabulated for simple geometries.  In general, with 
the slender body aligned lengthwise along the 1-axis, the 2D cross-sectional slice is aligned 
with the 2-3 plane, some distance x from the origin (figure 1).  This 2D slice is shown in 
figure 2. To find the 3D coefficients we need to know the 2D coefficient of each section 
(strip) along the length of the vessel. For a uniform diameter cylinder this is quite simple, 
but for ships with complex geometry there is a bit more work involved.  

2D cross-sectional slice of slender body. 

The 2D coefficients will be written as aij whereas the 3D coefficients are written as mij . 
From here on we will follow the basic formulations used in the handbook: Principles of 
Naval Architecture Vol III., (1989) Soc. Naval Arch. and Marine Engineers, p. 56. 

1 2 3 4 5 6 
1 

2 22 22 
L 

m a dx= ∫ 23 23 
L 

m a dx= −  ∫ 24 24 
L 

m a dx= ∫ 26 22 
L 

m x a dx = ∫ 
3 33 33m  a  dx  = ∫ 35 33m  x  a  dx  = −  ∫ 

L L 

4 44 44 
L 

m a dx= ∫ 46 24 
L 

m x a dx = ∫ 
5 2 

55 33 
L 

m  x  a  dx  = ∫ 
6 2 

66 22 
L 

m  x  a  dx  = ∫ 
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