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2.008 Design & Manufacturing 
II

Spring 2002

Systems Design

2

- HW#1 due today. 
- No HW today. 
- Reading, Kalpakjian, P177-199
- Monday 2/16, Holiday
- Tuesday 2/17, Monday’s lecture &        
lab group A
- Wednesday 2/18, Yo-Yo case study
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Super bowl 2002

BIG PICTURE
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Systems Design
Is Pats a good team?

Is MIT a good school?

Am I a good teacher?
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A University (Manufacturing System)

High schools
Colleges

Etc.

Faculty, staff, academic programs

Graduate 
schools

Industry
Government

Society
administration

Suppliers CustomersManufacturing system

graduationadmission F So J Se

Fundamental
Knowledge
Hands-on
knowledge

Image removed due to copyright considerations.
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Good Design
 lecture room ?

Boston T ?

Honda Civic ?

Logan Airport ?

Government ?
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Design Domains
“What” to “How”, “Top” to “Bottom”

What How
Functional
Requirements

Design 
Parameters

No impromptu designs!!
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Light

50 µm

Active Matrix

Piezoelectric
Actuator

Mirror

TMA(thinfilm micromirror array)

Mirror Array on

Piezoelectric

Actuator Array

Daewoo Electronics

Case study
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TMA

Projection Lens

Light Source

Modulation Stop

TMA
Mirror

Source Stop

No TiltingNo Tilting

Max. TiltingMax. Tilting

Black

White

Increase of tilting angle
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Evolution of TMA Pixels
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Functional Requirements of TMA

1st Generation
FR1= light reflection
FR2= mirror tilting

DP1= cantilever top surface
DP2= PZT sandwich

FR1
FR2

DP1
DP2

= X X
X X
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Image by 1st Gen. TMA –96’ 12
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Functional Requirements of TMA

2nd Generation
FR1= light reflection
FR2= mirror tilting

DP1= cantilever top surface
DP2= PZT sandwich

FR1

FR2

DP1

DP2

= X O
X X
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Image by the 2nd Gen. TFAMA - 1997.07
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Functional Requirements of TMA

3rd Generation
FR1= light reflection
FR2= mirror tilting

DP1= cantilever top surface
DP2= PZT sandwich

FR1

FR2

DP1

DP2

= X O
O X
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VGA
640 X 480
307,200 pixels

50 µm

Human Hair

XGA
1024 X 768

786,432 pixels

TMA
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Image by  the 3rd Gen. TMA -
1997.12

150 in. Screen150 in. Screen
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XGA Image, Nov. 1999
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Good Design
in small scale products?

“What” to “How”, “Top” to “Bottom”

What How
Functional
Requirements

Design 
Parameters

Design Axioms
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Example: Shower Faucet

Functional Requirements
- Temperature
- Flow rate

θh

θv
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Independence Axiom
Maintain the independence of FRs.

Shower faucet example

FR1
FR2

DP1
DP2

= X X
X X

FR1= Temperature
FR2= Flow rate

DP1= Hot water
DP2= Cold Water

FR1
FR2

DP1
DP2

= X O
O X

FR1= Temperature
FR2= Flow rate

DP1= Horizontal Angle
DP2= Vertical Angle
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Information Axiom
Minimize the information content of the 
design

Design range

System range
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Functional Requirements
Al Cans
12 FRs
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Systems View–
Four Design Domains

Customer
Domain

Functional
Domain

Physical 
Domain

Process
Domain

?
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Isolated domains

High walls
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Concurrent Engineering

Customer
Domain

Functional
Domain

Physical 
Domain

Process
Domain

Lower walls
-Car program manager
-Project Manager
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Four domains

People 
resources

Programs 
offices

FunctionsCustomer 
satisfaction

Organization

ResourcesBusiness 
structure

Business 
goals

ROIBusiness

SubroutinesInput 
variables

Output of 
programs

Attributes
desired

Software

ProcessesMicro-
structure

PropertiesPerformancesMaretials

PVDPFRCAManufacturing
systems
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Systems Design
Customer Satisfaction
Concurrent Design
Design for Manufacturing, Assembly and “X”
Quality Control, Six Sigma
House of Quality, Takuchi method
Axiomatic Design

Any of these efforts in MEMS/Nano?
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Principles of Design

Axioms
Does scale matter?

Multi-scale Systems design, 2.76
Culpepper & Kim, Fall 2004

Axiomatic Design, 2.882
1. N.P. Suh, Principles of Design, Oxford, 1990
2. N. P. Suh, Axiomatic Design: Advances and 

Applications, Oxford, 2001
3. N. P. Suh, Complexity: Theory and Applications, 

Oxford, 2004
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Manufacturing

Unit 
Manufacturing

Processes

Assembly and 
Joining

Design for
Manufacture

Market
Research

Conceptual
Design

Factory, 
Systems & 
Enterprise

•Welding
•Bolting
•Bonding
•Soldering

•Machining
•Injection molding
•Casting
•Stamping
•Chemical vapor 
deposition
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Manufacturing System

Manufacturing
Support
system

Facilities
Factory

equipments

Raw materials Finished products
Factory operations
Processing
Material handling
inspection

Design

Manufacturing
planning

Manufacturing 
control

Marketing

Value add process
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Manufacturing

Transformation of materials and 
information into goods for the 
satisfaction of human needs

Big Picture ?
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History

1.  Greek “manu factus”:  made 
by hand

2.  Early mode: piece by piece by skilled artisan

3.  In 1750 - 1800: Industrial revolution 
Early machine tool
Concept of factory
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History (cont)
4.  1800’s Process specialization

Division of labor
Eli Whitney, etc., Interchangeable parts

5.  Early 1900: Optimization (Manufacturing systems)
F.W. Taylor
Economy of scale
Cost reduction for high volume production
Henry Ford’s Model T

6.  1950’s: Numerical control (Information technology)
Automation
Lean manufacturing, JIT
6 sigma, ppm
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Post-Industrial-Revolution History of 
Manufacturing Technologies

The Industrial Revolution (1770-1830):  Introduction 
of steam power to replace waterpower and animal-
muscle power. 

Decline in yearly hours worked per person:  From 
3000 hours to 1500 hours in Europe and to 1600 
hours in North America. 

Increase in labor productivity.

Increase in GDP per worker:  7 fold in U.S.A., 10 fold 
in Germany, and 20 fold in Japan.



7

2.008 MIT, S. Kim B. Benhabib 37

Automotive Manufacturing Industry

The Ford Motor Co. has been the most studied and 
documented car manufacturing enterprise. 

The 1909 Model T car was easy to operate and 
maintain. 

By 1920, Ford was building half 
the cars in the world 

(more than 500K per year).
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Automotive Manufacturing Industry  (cont.)

54,94746,85629,74510,5774,80025655N/AWorld
1,9721,5692,1837851761431.6U.K.

2,8322,05045S. Korea

9,90511,2274,67432N/AJapan

1,7011,2671,5921274051N/AItaly

5,6873,9903,739304551341Germany
3,0323,1552,45935717738202France

3,0562,2371,353388161Canada

13,02410,86410,2068,0054,265187233U.S.A.

19991993196819501925191019051899
Table.  Motor vehicle production numbers per year per country (in thous.)
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Manufacturing Industry
$4 Trillion, shipments, 1997

1997 Economic Census, U.S. Census Bureau
Whole Sale  $4 T, Retail $2.5 T

459 SIC industries (NAICS)

http://libraries.mit.edu/subjects/course.html
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Gross State Product
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US Gross State Product, 1992
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Big Picture

Information Technology (digital)

Globalization

New Manufacturing Technology

New Materials
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Key Issues
• Engineering disciplines

• Materials
• Manufacturing processes
• Manufacturing equipment
• Design for manufacturing (DFM)

• Management disciplines
• Work force
• Societal obligation
• For-profit organization
• 2.96

• Integration
• Manufacturing systems
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Processes of 2.008

Metal
components

Plastic
components

Silicon

Joining
processes

Removal

Squeezing

Melting

Injection molding

Thermo forming

Welding

Soldering/brazing

Gluing

Milling, turning, drilling

Forging, stamping

Casting

Deposition
Etching

CVD, PVD

Wet, dry
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Manufacturing Attributes for 
Decision Making

Cost
Rate
Quality
Flexibility
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Material removal –the oldest
Cost:

Expensive $100 -
$10,000

Quality:
Very high

Flexibility:
Any shape under the 
sun

Rate:
Slow
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Metal squeezing
Cost:

Cheap, $0.1 - $100
Quality:

reasonable
Flexibility:

Shapes limited constant 
cross-section

Rate:
Fast (cycle time in sec), high 
volume
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Melting
Cost:

Expensive $100 - $10,000
Quality:

Requires post finishing
Die casting

Flexibility:
Very flexible, good for large 
parts

Rate:
Very slow

Machine tool surface 
plate, gray iron 14,500 
lbs

16V engine block
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Plastics processing
Cost:

Expensive mold and 
die,  over $10,000

Quality:
Very high

Flexibility:
Opening for ejection

Rate:
Very fast
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Joining
Cost:

Cheap, but expensive  
labor

Quality:
Wide range

Flexibility:
Manual vs automated

Rate:
Slow in general

Very Large Crude Carrier (VLCC)
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Thinfilm fabrication
Cost:

Very expensive 
$Millions

Quality:
Very high

Flexibility:
Any shape in 2-D

Rate:
Slow

300mm dual stage lithography 
system capable of 110nm 
resolution
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Typical Cost Breakdown
Selling Price

Admin, sales
24%

Profit
19%

R&D
5%

Manufacturing
38%

Engineering
14%

Manufacturing Costs

Direct 
labor
12%

Parts, 
Material

50%Indirect 
labor
26%

Plant 
Machinery

12%
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Performance Measures

Capital cost
Production rate or capacity
Cycle time
Lead time
Machine utilization
Work-in-process
On-time deliveries


