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Summary: Compensator design using the Root Locus; State Space

Root Locus sketching rules (negative feedback)
• Rule 1: # branches = # open-loop poles
• Rule 2: symmetrical about the real axis
• Rule 3: real-axis segments are to the left of an odd number of real-axis finite 

open-loop poles/zeros
• Rule 4: RL begins at open-loop poles (K=0), ends at open-loop zeros (K=∞)
• Rule 5: Asymptotes: real-axis intercept σa, angles θa

• Rule 6: Real-axis break-in and breakaway points

• Rule 7: Imaginary axis crossings (transition to instability)

σa =

P
finite poles−

P
finite zeros

#finite poles−#finite zeros
θa =

(2m+ 1)π

#finite poles−#finite zeros
m = 0,±1,±2, . . .

Found by setting K(σ) = −
1

G(σ)H(σ)
(σ real) and solving

dK(σ)

dσ
= 0 for real σ.

Found by setting KG(jω)H(jω) = −1 and solving

⎧⎨⎩
Re
£
KG(jω)H(jω)

¤
= −1,

Im
£
KG(jω)H(jω)

¤
= 0.

generic system block diagram with 
controller/compensator and feedback

purpose: to improve the system’s dynamics
by proper choice of the controller TF and gain

Gc(s)

choice of
compensators

K

Proportional (P)

K(s+ z)

Proportional-Derivative (PD)

Proportional-Integral (PI)

K
s+ z

s

… and others that we haven’t
seen: PID, lead, lag, lead-lag

What is Root Locus?

open-loop
poles/zeros

Open—Loop TF: KGp(s)Gc(s)H(s) Closed—Loop TF:
KGp(s)Gc(s)

1 +KGp(s)Gc(s)H(s)

RL: locations on the s-plane
where the closed-loop poles move
as we vary the       feedback gain K

σ ≡ Re {s}
jω
≡
jI
m
{s
}
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Figure by MIT OpenCourseWare.
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#2

open-loop
poles/zeros

σ ≡ Re {s}

jω
≡
jI
m
{s
}

s on the RL

θp1θp2
θz

⇒ 1 +KGc(s)Gp(s)H(s) = 0⇒ KGc(s)Gp(s)H(s) = −1

lp1

lp2
l z ⇒

½
|KGc(s)Gp(s)H(s)| = 1
6 {KGc(s)Gp(s)H(s)} = (2m+ 1)π

⇒

⎧⎪⎪⎨⎪⎪⎩
K =

1

|Gc(s)Gp(s)H(s)|P
6 (s+ z)−

P
6 (s+ p) = (2m+ 1)π

sums taken over
Open Loop zeros/poles

Here, Open Loop poles are p1 = 0, −p2 = −2, Open Loop zero is −z = −4.
Geometrical interpretation of the amplitude and phase contributions to s:

lp1 = |s+ p1| = |s| ; lp2 = |s+ p2| = |s+ 2| ; lz = |s+ z| = |s+ 4| ;
θp1 = 6 (s+ p1) = 6 s; θp2 = 6 (s+ p2) = 6 (s+ 2) ; θz = 6 (s+ z) = 6 (s+ 4) .

Since the point s shown as crimson block belongs to the Root Locus,

⇒

⎧⎪⎪⎨⎪⎪⎩
K =

|s| |s+ 2|

|s+ 4|
=
lp1lp2

lz

6 (s+ 4)− 6 s− 6 (s+ 2) = θz − θp1 − θp2 = −π

The crimson block is at s = −2 + j2 on the Root Locus. Using geometry,

lp1 = |s| = 2
√
2; lp2 = |s+ 2| = 2; lz = |s+ 4| = 2

√
2

θp1 = 6 s = 3π/4; θp2 = 6 (s+ 2) = π/2; θz = 6 (s+ 4) = π/4.

We can see that indeed the angular contributions add up as
θz − θp1 − θp2 = −π,

while the amplitude contributions give K =
¡
2
√
2× 2

¢
/
¡
2
√
2
¢
⇒ K = 2.

p1 = 0−p2−z

−2−4

2

• Settling time

• Damped osc. frequency

• Overshoot %OS

Ts ≈ 4/(ζωn);

ωd =
p
1− ζ2ωn

%OS = exp

Ã
−

ζπp
1− ζ2

!
tan θ =

p
X

X
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s-plane

− ζ ωn = − σd 

+ jωn   1 − ζ2 = jωd

− jωn   1 − ζ2 = −jωd

jω

σ

Figure by MIT OpenCourseWare.

1− ζ2

ζ
cos θ = ζ

s-space geometry and transient characteristics

TF =
ω2n

s2 + 2ζωns+ ω2n
.

State Space & Phase Space
From the Equation of Motion to the State—Space representation:

mẍ(t)+bẋ(t)+kx(t) = w(t)→

µ
x
ẋ

¶
≡ q(t) =

µ
q1
q2

¶
state, y(t) ≡ ẋ(t) output

⇒ q̇(t) =

µ
q̇1
q̇2

¶
=

µ
0 1

−k/m −b/m

¶µ
q1
q2

¶
+

µ
0
1

¶
w(t); y(t) = (0 1)

µ
q1
q2

¶
≡ cq.

Solution to the state equations:

sq̂(s) = Aq̂(s) + bW (s)⇒

q̂(s) = (sI−A)−1 bW (s).

Y (s) = cq̂(s) = c (sI−A)−1 bW (s).

q1

q2 t
A=

µ
0 1

−k/m −b/m

¶

b =

µ
0
1

¶
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