
Summary: Root Locus sketching rules 

Negative Feedback 
•	 Rule 1: # branches = # poles 
•	 Rule 2: symmetrical about the real axis 
•	 Rule 3: real-axis segments are to the left of an odd number of real-axis finite 

poles/zeros 
•	 Rule 4: RL begins at poles, ends at zeros 
•	 Rule 5: Asymptotes: real-axis intercept σa,angles θa P	 P 

= 
finite poles − finite zeros 

= 
(2m + 1)π	

m = 0,±1,±2, . . .σa	 θa
#finite poles − #finite zeros #finite poles − #finite zeros 

•	 Rule 6: Real-axis break-in and breakaway points 
1	 dK(σ)

Found by setting K(σ) =  − 
G(σ)H(σ)

(σ real) and solving 
dσ 

= 0  for  real  σ. 

•	 Rule 7: Imaginary axis crossings (transition to instability) ⎨ Re KG(jω)H(jω) = −1, 
Found by setting KG(jω)H(jω) =  −1 and  solving  

⎧ 

£
£ 

¤
¤

⎩ 
Im	 KG(jω)H(jω) = 0. 

•	 Today’s Goal: Shaping the transient response by adjusting the feedback gain 
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Damping ratio and pole location 
Recall 2nd—order 

underdamped sustem 

ω2 
n 

s2 + 2ζωns + ωn 
2 
. 

Complex poles − σd ± jωd, ½ 
σd = ζωn,

where p
ωd = 1 − ζ2ωn. 

From the geometry, p
1 − ζ2 

tan θ = 
ζ 

⇒
Figure by MIT OpenCourseWare. 

cos θ = ζ. Fig. 4.17 

The angle θ that a complex pole subtends to the origin of the s-plane 
determines the damping ratio ζ of an underdamped 2nd order system. 

The distance from the pole to the origin equals the natural frequency. 
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Transient response and pole location


•	 Settling time 

Ts ≈ 4/(ζωn); 

•	 Damped osc. frequency p
ωd = 1 − ζ2ωn 

Overshoot %OS• Ã	 ! 
ζπ 

%OS = exp − p
1 − ζ2 p

1 − ζ2 
tan θ = 

ζ 
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Images removed due to copyright restrictions. 

Please see: Fig. 4.19 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.



Trends in underdamped response as ζ increases


Fig. 4.14 As ζ ,↑

Rise time Tr (slower); • ↑ 

• Settling time Ts ≈ 4/(ζωn) ↑ (slower); p
• Peak time Tp = π/( 1 − ζ2ωn) ↑ (slower); 

Overshoot %OS (smaller) • ↓ 

Images removed due to copyright restrictions.


 Please see: Fig. 4.15 and 4.16 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.
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Figure by MIT OpenCourseWare.



As ζ ↑ ⇔  θ ↓, 

• Rise time Tr ↑ (slower); If the given RL does not 
• Settling time Ts ↑ (slower); allow the desired transient 

characteristics to be achieved, 
• Peak time Tp ↑ (slower); then we must modify the RL 

by adding poles/zeros 
• Overshoot %OS ↓ (smaller) (compensator design) 

Achieving a desired transient with a given RL 
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Figure by MIT OpenCourseWare.

Figure 8.25 Figure 8.10 



K 0.3162 
s(s+2) 

Vref (s) X(s) 

Example: 2nd order – type 1 system 

We are given ζ = 1/
√
2 = 0.7071. For this value, Ã ! 

−2 −1 0 

σ 

jω 

−1 

+1 

−pc− 

−pc+ 

closed loop 
pole locations 
for ζ=0.7071 

%OS = exp p ζπ 
× 100 = e−π × 100 = 4.32%. 

1 − ζ2 

Also, cos θ = ζ θ = ±45◦.⇒ 

We can locate the closed—loop poles

by finding the intersection of the root locus


with the lines θ = ±45◦.


We can also estimate the feedback gain K

that will yield the required closed—loop poles −pc+, −pc−


from the relationship K = 1/ |G(−pc±)H(−pc±)| ⇒


K = 
|pc±| |pc± + 2| 

= 

√
2 ×

√
2 
= 6.325. 

0.3162 0.3162 

The numerator is computed geometrically from the 
equilateral triangle {(−2), (pc+), (0)} 
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Example: higher order system
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Positive feedback: sketching the Root Locus


Closed—loop TF(s) =  

Figure 8.26 

KG(s) 
. 

1 − KG(s)H(s) 

•	 Rule 1: # branches = # poles 
•	 Rule 2: symmetrical about the real axis 
•	 Rule 3: real-axis segments are to the left of an even number of real-axis finite 

poles/zeros 
•	 Rule 4: RL begins at poles, ends at zeros 
•	 Rule 5: Asymptotes: real-axis intercept σa,angles θa P	 P 

finite poles − finite zeros 2mπ 
σa = 

#finite poles − #finite zeros 
θa = 

#finite poles − #finite zeros 
m = 0,±1,±2, . . .  

•	 Rule 6: Real-axis break-in and breakaway points 
1	 dK(σ)

Found by setting K(σ) =  − 
G(σ)H(σ)

(σ real) and solving 
dσ 

= 0+	 for  real  σ. 

•	 Rule 7: Imaginary axis crossings (transition to instability) ⎨ Re KG(jω)H(jω) = +−1, 
Found by setting KG(jω)H(jω) =  −1 and  solving  

⎧ 

£
£ 

¤
¤

+ ⎩ 
Im	 KG(jω)H(jω) = 0. 
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Figure by MIT OpenCourseWare.
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Example: positive feedback


K < 0 ⇔ 

with K >  0. 

Figure 8.11 

Figure 8.26 

Real—axis asymptote intercept: 

σa =
(−1 − 2 − 4) − (−3) 

= − 
4 

4 − 1 3 

Asymptote angles 

2mπ 
θa = , m  = 0, 1, 2, . . .

4 − 1 
= 0, m = 0, 

= 2π/3, m = 1, 

= 4π/3, m = 2. 

Breakaway point: 

Image removed due to copyright restrictions. 

found numerically. 

Please see Fig. 8.26b in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004. 
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Figure by MIT OpenCourseWare.

Figure by MIT OpenCourseWare.
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